đ Wav2Vec2-Large-XLSR-53-Georgian
This model is fine-tuned from facebook/wav2vec2-large-xlsr-53 on Georgian using the Common Voice. It's designed for speech recognition tasks in Georgian.
đ Quick Start
Fine-tuned facebook/wav2vec2-large-xlsr-53 on Georgian using the Common Voice.
When using this model, make sure that your speech input is sampled at 16kHz.
⨠Features
- Dataset: Fine-tuned on the Georgian subset of the Common Voice dataset.
- Metrics: Evaluated using Word Error Rate (WER).
- Task: Suitable for automatic speech recognition tasks in Georgian.
đĻ Installation
No specific installation steps are provided in the original document.
đģ Usage Examples
Basic Usage
import librosa
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "ka", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("xsway/wav2vec2-large-xlsr-georgian")
model = Wav2Vec2ForCTC.from_pretrained("xsway/wav2vec2-large-xlsr-georgian")
resampler = lambda sampling_rate, y: librosa.resample(y.numpy().squeeze(), sampling_rate, 16_000)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(sampling_rate, speech_array).squeeze()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
Advanced Usage
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
import librosa
test_dataset = load_dataset("common_voice", "ka", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("xsway/wav2vec2-large-xlsr-georgian")
model = Wav2Vec2ForCTC.from_pretrained("xsway/wav2vec2-large-xlsr-georgian")
model.to("cuda")
chars_to_ignore_regex = '[\\\\,\\\\?\\\\.\\\\!\\\\-\\\\;\\\\:\\\\\"\\\\â]'
resampler = lambda sampling_rate, y: librosa.resample(y.numpy().squeeze(), sampling_rate, 16_000)
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(sampling_rate, speech_array).squeeze()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
đ Documentation
Model Information
Property |
Details |
Model Type |
XLSR Wav2Vec finetuned for Georgian |
Training Data |
Common Voice train and validation datasets for Georgian |
Metrics |
Word Error Rate (WER) |
Test Result |
45.28 % |
Training
The Common Voice train
, validation
datasets were used for training.
The script used for training can be found here
đ License
This model is licensed under the Apache 2.0 license.