Model Overview
Model Features
Model Capabilities
Use Cases
🚀 eng-ine
This is a translation model that translates English into various Indo - European languages, providing a wide - range of language translation capabilities.
🚀 Quick Start
This eng-ine
model is designed for translating English to a multitude of Indo - European languages. To get started, you need to ensure you have the necessary pre - processing steps in place. A sentence initial language token in the form of >>id<<
(where id
is a valid target language ID) is required.
✨ Features
- Broad Language Support: Supports a vast array of Indo - European languages, including but not limited to Afrikaans, Arabic, Armenian, Basque, Belarusian, Bulgarian, Catalan, Czech, Danish, Dutch, English, Estonian, Finnish, French, Galician, German, Greek, Gujarati, Hebrew, Hindi, Hungarian, Icelandic, Irish, Italian, Japanese, Kannada, Korean, Latvian, Lithuanian, Macedonian, Malayalam, Marathi, Norwegian, Persian, Polish, Portuguese, Romanian, Russian, Serbian, Slovak, Slovenian, Spanish, Swedish, Tamil, Telugu, Thai, Turkish, Ukrainian, Urdu, and Welsh.
- Transformer Model: Utilizes a transformer architecture, which is known for its effectiveness in handling sequence - to - sequence tasks such as machine translation.
- Pre - processing: Incorporates normalization and SentencePiece (spm32k, spm32k) for pre - processing, which helps in better handling of text data.
📦 Installation
There is no specific installation steps provided in the original document. If you want to use this model, you may need to download the original weights from the provided link: [opus2m - 2020 - 08 - 01.zip](https://object.pouta.csc.fi/Tatoeba - MT - models/eng - ine/opus2m - 2020 - 08 - 01.zip)
💻 Usage Examples
There are no code examples provided in the original document. However, in a general machine - translation scenario, you might use a framework like Hugging Face's transformers
library. Here is a simple pseudo - code example:
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
# Load the model and tokenizer
model = AutoModelForSeq2SeqLM.from_pretrained('path/to/downloaded/model')
tokenizer = AutoTokenizer.from_pretrained('path/to/downloaded/tokenizer')
# Input English text
input_text = "This is a test sentence."
# Add the target language token (e.g., for Spanish)
input_text_with_token = ">>spa<< " + input_text
# Tokenize the input
input_ids = tokenizer.encode(input_text_with_token, return_tensors='pt')
# Generate translation
outputs = model.generate(input_ids)
# Decode the output
translation = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(translation)
📚 Documentation
Model Information
Property | Details |
---|---|
Model Type | Transformer |
Source Language | English (eng) |
Target Languages | afr aln ang_Latn arg asm ast awa bel bel_Latn ben bho bos_Latn bre bul bul_Latn cat ces cor cos csb_Latn cym dan deu dsb egl ell enm_Latn ext fao fra frm_Latn frr fry gcf_Latn gla gle glg glv gom gos got_Goth grc_Grek gsw guj hat hif_Latn hin hrv hsb hye ind isl ita jdt_Cyrl ksh kur_Arab kur_Latn lad lad_Latn lat_Latn lav lij lit lld_Latn lmo ltg ltz mai mar max_Latn mfe min mkd mwl nds nld nno nob nob_Hebr non_Latn npi oci ori orv_Cyrl oss pan_Guru pap pdc pes pes_Latn pes_Thaa pms pnb pol por prg_Latn pus roh rom ron rue rus san_Deva scn sco sgs sin slv snd_Arab spa sqi srp_Cyrl srp_Latn stq swe swg tgk_Cyrl tly_Latn tmw_Latn ukr urd vec wln yid zlm_Latn zsm_Latn zza |
Pre - processing | Normalization + SentencePiece (spm32k, spm32k) |
Original Weights Download | [opus2m - 2020 - 08 - 01.zip](https://object.pouta.csc.fi/Tatoeba - MT - models/eng - ine/opus2m - 2020 - 08 - 01.zip) |
Test Set Translations | [opus2m - 2020 - 08 - 01.test.txt](https://object.pouta.csc.fi/Tatoeba - MT - models/eng - ine/opus2m - 2020 - 08 - 01.test.txt) |
Test Set Scores | [opus2m - 2020 - 08 - 01.eval.txt](https://object.pouta.csc.fi/Tatoeba - MT - models/eng - ine/opus2m - 2020 - 08 - 01.eval.txt) |
Benchmarks
testset | BLEU | chr - F |
---|---|---|
newsdev2014 - enghin.eng.hin | 6.2 | 0.317 |
newsdev2016 - enro - engron.eng.ron | 22.1 | 0.525 |
newsdev2017 - enlv - englav.eng.lav | 17.4 | 0.486 |
newsdev2019 - engu - engguj.eng.guj | 6.5 | 0.303 |
newsdev2019 - enlt - englit.eng.lit | 14.9 | 0.476 |
newsdiscussdev2015 - enfr - engfra.eng.fra | 26.4 | 0.547 |
newsdiscusstest2015 - enfr - engfra.eng.fra | 30.0 | 0.575 |
newssyscomb2009 - engces.eng.ces | 14.7 | 0.442 |
newssyscomb2009 - engdeu.eng.deu | 16.7 | 0.487 |
newssyscomb2009 - engfra.eng.fra | 24.8 | 0.547 |
newssyscomb2009 - engita.eng.ita | 25.2 | 0.562 |
newssyscomb2009 - engspa.eng.spa | 27.0 | 0.554 |
news - test2008 - engces.eng.ces | 13.0 | 0.417 |
news - test2008 - engdeu.eng.deu | 17.4 | 0.480 |
news - test2008 - engfra.eng.fra | 22.3 | 0.519 |
news - test2008 - engspa.eng.spa | 24.9 | 0.532 |
newstest2009 - engces.eng.ces | 13.6 | 0.432 |
newstest2009 - engdeu.eng.deu | 16.6 | 0.482 |
newstest2009 - engfra.eng.fra | 23.5 | 0.535 |
newstest2009 - engita.eng.ita | 25.5 | 0.561 |
newstest2009 - engspa.eng.spa | 26.3 | 0.551 |
newstest2010 - engces.eng.ces | 14.2 | 0.436 |
newstest2010 - engdeu.eng.deu | 18.3 | 0.492 |
newstest2010 - engfra.eng.fra | 25.7 | 0.550 |
newstest2010 - engspa.eng.spa | 30.5 | 0.578 |
newstest2011 - engces.eng.ces | 15.1 | 0.439 |
newstest2011 - engdeu.eng.deu | 17.1 | 0.478 |
newstest2011 - engfra.eng.fra | 28.0 | 0.569 |
newstest2011 - engspa.eng.spa | 31.9 | 0.580 |
newstest2012 - engces.eng.ces | 13.6 | 0.418 |
newstest2012 - engdeu.eng.deu | 17.0 | 0.475 |
newstest2012 - engfra.eng.fra | 26.1 | 0.553 |
newstest2012 - engrus.eng.rus | 21.4 | 0.506 |
newstest2012 - engspa.eng.spa | 31.4 | 0.577 |
newstest2013 - engces.eng.ces | 15.3 | 0.438 |
newstest2013 - engdeu.eng.deu | 20.3 | 0.501 |
newstest2013 - engfra.eng.fra | 26.0 | 0.540 |
newstest2013 - engrus.eng.rus | 16.1 | 0.449 |
newstest2013 - engspa.eng.spa | 28.6 | 0.555 |
newstest2014 - hien - enghin.eng.hin | 9.5 | 0.344 |
newstest2015 - encs - engces.eng.ces | 14.8 | 0.440 |
newstest2015 - ende - engdeu.eng.deu | 22.6 | 0.523 |
newstest2015 - enru - engrus.eng.rus | 18.8 | 0.483 |
newstest2016 - encs - engces.eng.ces | 16.8 | 0.457 |
newstest2016 - ende - engdeu.eng.deu | 26.2 | 0.555 |
newstest2016 - enro - engron.eng.ron | 21.2 | 0.510 |
newstest2016 - enru - engrus.eng.rus | 17.6 | 0.471 |
newstest2017 - encs - engces.eng.ces | 13.6 | 0.421 |
newstest2017 - ende - engdeu.eng.deu | 21.5 | 0.516 |
newstest2017 - enlv - englav.eng.lav | 13.0 | 0.452 |
newstest2017 - enru - engrus.eng.rus | 18.7 | 0.486 |
newstest2018 - encs - engces.eng.ces | 13.5 | 0.425 |
newstest2018 - ende - engdeu.eng.deu | 29.8 | 0.581 |
newstest2018 - enru - engrus.eng.rus | 16.1 | 0.472 |
newstest2019 - encs - engces.eng.ces | 14.8 | 0.435 |
newstest2019 - ende - engdeu.eng.deu | 26.6 | 0.554 |
newstest2019 - engu - engguj.eng.guj | 6.9 | 0.313 |
newstest2019 - enlt - englit.eng.lit | 10.6 | 0.429 |
newstest2019 - enru - engrus.eng.rus | 17.5 | 0.452 |
Tatoeba - test.eng - afr.eng.afr | 52.1 | 0.708 |
Tatoeba - test.eng - ang.eng.ang | 5.1 | 0.131 |
Tatoeba - test.eng - arg.eng.arg | 1.2 | 0.099 |
Tatoeba - test.eng - asm.eng.asm | 2.9 | 0.259 |
Tatoeba - test.eng - ast.eng.ast | 14.1 | 0.408 |
Tatoeba - test.eng - awa.eng.awa | 0.3 | 0.002 |
Tatoeba - test.eng - bel.eng.bel | 18.1 | 0.450 |
Tatoeba - test.eng - ben.eng.ben | 13.5 | 0.432 |
Tatoeba - test.eng - bho.eng.bho | 0.3 | 0.003 |
Tatoeba - test.eng - bre.eng.bre | 10.4 | 0.318 |
Tatoeba - test.eng - bul.eng.bul | 38.7 | 0.592 |
Tatoeba - test.eng - cat.eng.cat | 42.0 | 0.633 |
Tatoeba - test.eng - ces.eng.ces | 32.3 | 0.546 |
Tatoeba - test.eng - cor.eng.cor | 0.5 | 0.079 |
Tatoeba - test.eng - cos.eng.cos | 3.1 | 0.148 |
Tatoeba - test.eng - csb.eng.csb | 1.4 | 0.216 |
Tatoeba - test.eng - cym.eng.cym | 22.4 | 0.470 |
Tatoeba - test.eng - dan.eng.dan | 49.7 | 0.671 |
Tatoeba - test.eng - deu.eng.deu | 31.7 | 0.554 |
Tatoeba - test.eng - dsb.eng.dsb | 1.1 | 0.139 |
Tatoeba - test.eng - egl.eng.egl | 0.9 | 0.089 |
Tatoeba - test.eng - ell.eng.ell | 42.7 | 0.640 |
Tatoeba - test.eng - enm.eng.enm | 3.5 | 0.259 |
Tatoeba - test.eng - ext.eng.ext | 6.4 | 0.235 |
Tatoeba - test.eng - fao.eng.fao | 6.6 | 0.285 |
Tatoeba - test.eng - fas.eng.fas | 5.7 | 0.257 |
Tatoeba - test.eng - fra.eng.fra | 38.4 | 0.595 |
Tatoeba - test.eng - frm.eng.frm | 0.9 | 0.149 |
Tatoeba - test.eng - frr.eng.frr | 8.4 | 0.145 |
Tatoeba - test.eng - fry.eng.fry | 16.5 | 0.411 |
Tatoeba - test.eng - gcf.eng.gcf | 0.6 | 0.098 |
Tatoeba - test.eng - gla.eng.gla | 11.6 | 0.361 |
Tatoeba - test.eng - gle.eng.gle | 32.5 | 0.546 |
Tatoeba - test.eng - glg.eng.glg | 38.4 | 0.602 |
Tatoeba - test.eng - glv.eng.glv | 23.1 | 0.418 |
Tatoeba - test.eng - gos.eng.gos | 0.7 | 0.137 |
Tatoeba - test.eng - got.eng.got | 0.2 | 0.010 |
Tatoeba - test.eng - grc.eng.grc | 0.0 | 0.005 |
Tatoeba - test.eng - gsw.eng.gsw | 0.9 | 0.108 |
Tatoeba - test.eng - guj.eng.guj | 20.8 | 0.391 |
Tatoeba - test.eng - hat.eng.hat | 34.0 | 0.537 |
Tatoeba - test.eng - hbs.eng.hbs | 33.7 | 0.567 |
Tatoeba - test.eng - hif.eng.hif | 2.8 | 0.269 |
Tatoeba - test.eng - hin.eng.hin | 15.6 | 0.437 |
Tatoeba - test.eng - hsb.eng.hsb | 5.4 | 0.320 |
Tatoeba - test.eng - hye.eng.hye | 17.4 | 0.426 |
Tatoeba - test.eng - isl.eng.isl | 17.4 | 0.436 |
Tatoeba - test.eng - ita.eng.ita | 40.4 | 0.636 |
Tatoeba - test.eng - jdt.eng.jdt | 6.4 | 0.008 |
Tatoeba - test.eng - kok.eng.kok | 6.6 | 0.005 |
Tatoeba - test.eng - ksh.eng.ksh | 0.8 | 0.123 |
Tatoeba - test.eng - kur.eng.kur | 10.2 | 0.209 |
Tatoeba - test.eng - lad.eng.lad | 0.8 | 0.163 |
Tatoeba - test.eng - lah.eng.lah | 0.2 | 0.001 |
Tatoeba - test.eng - lat.eng.lat | 9.4 | 0.372 |
Tatoeba - test.eng - lav.eng.lav | 30.3 | 0.559 |
Tatoeba - test.eng - lij.eng.lij | 1.0 | 0.130 |
Tatoeba - test.eng - lit.eng.lit | 25.3 | 0.560 |
Tatoeba - test.eng - lld.eng.lld | 0.4 | 0.139 |
Tatoeba - test.eng - lmo.eng.lmo | 0.6 | 0.108 |
Tatoeba - test.eng - ltz.eng.ltz | 18.1 | 0.388 |
Tatoeba - test.eng - mai.eng.mai | 17.2 | 0.464 |
Tatoeba - test.eng - mar.eng.mar | 18.0 | 0.451 |
Tatoeba - test.eng - mfe.eng.mfe | 81.0 | 0.899 |
Tatoeba - test.eng - mkd.eng.mkd | 37.6 | 0.587 |
Tatoeba - test.eng - msa.eng.msa | 27.7 | 0.519 |
Tatoeba - test.eng - multi | 32.6 | 0.539 |
Tatoeba - test.eng - mwl.eng.mwl | 3.8 | 0.134 |
Tatoeba - test.eng - nds.eng.nds | 14.3 | 0.401 |
Tatoeba - test.eng - nep.eng.nep | 0.5 | 0.002 |
Tatoeba - test.eng - nld.eng.nld | 44.0 | 0.642 |
Tatoeba - test.eng - non.eng.non | 0.7 | 0.118 |
Tatoeba - test.eng - nor.eng.nor | 42.7 | 0.623 |
Tatoeba - test.eng - oci.eng.oci | 7.2 | 0.295 |
Tatoeba - test.eng - ori.eng.ori | 2.7 | 0.257 |
Tatoeba - test.eng - orv.eng.orv | 0.2 | 0.008 |
Tatoeba - test.eng - oss.eng.oss | 2.9 | 0.264 |
Tatoeba - test.eng - pan.eng.pan | 7.4 | 0.337 |
Tatoeba - test.eng - pap.eng.pap | 48.5 | 0.656 |
Tatoeba - test.eng - pdc.eng.pdc | 1.8 | 0.145 |
Tatoeba - test.eng - pms.eng.pms | 0.7 | 0.136 |
Tatoeba - test.eng - pol.eng.pol | 31.1 | 0.563 |
Tatoeba - test.eng - por.eng.por | 37.0 | 0.605 |
Tatoeba - test.eng - prg.eng.prg | 0.2 | 0.100 |
Tatoeba - test.eng - pus.eng.pus | 1.0 | 0.134 |
Tatoeba - test.eng - roh.eng.roh | 2.3 | 0.236 |
Tatoeba - test.eng - rom.eng.rom | 7.8 | 0.340 |
Tatoeba - test.eng - ron.eng.ron | 34.3 | 0.585 |
Tatoeba - test.eng - rue.eng.rue | 0.2 | 0.010 |
Tatoeba - test.eng - rus.eng.rus | 29.6 | 0.526 |
Tatoeba - test.eng - san.eng.san | 2.4 | 0.125 |
Tatoeba - test.eng - scn.eng.scn | 1.6 | 0.079 |
Tatoeba - test.eng - sco.eng.sco | 33.6 | 0.562 |
Tatoeba - test.eng - sgs.eng.sgs | 3.4 | 0.114 |
Tatoeba - test.eng - sin.eng.sin | 9.2 | 0.349 |
Tatoeba - test.eng - slv.eng.slv | 15.6 | 0.334 |
Tatoeba - test.eng - snd.eng.snd | 9.1 | 0.324 |
Tatoeba - test.eng - spa.eng.spa | 43.4 | 0.645 |
Tatoeba - test.eng - sqi.eng.sqi | 39.0 | 0.621 |
Tatoeba - test.eng - stq.eng.stq | 10.8 | 0.373 |
Tatoeba - test.eng - swe.eng.swe | 49.9 | 0.663 |
Tatoeba - test.eng - swg.eng.swg | 0.7 | 0.137 |
Tatoeba - test.eng - tgk.eng.tgk | 6.4 | 0.346 |
Tatoeba - test.eng - tly.eng.tly | 0.5 | 0.055 |
Tatoeba - test.eng - ukr.eng.ukr | 31.4 | 0.536 |
Tatoeba - test.eng - urd.eng.urd | 11.1 | 0.389 |
Tatoeba - test.eng - vec.eng.vec | 1.3 | 0.110 |
Tatoeba - test.eng - wln.eng.wln | 6.8 | 0.233 |
Tatoeba - test.eng - yid.eng.yid | 5.8 | 0.295 |
Tatoeba - test.eng - zza.eng.zza | 0.8 | 0.086 |
System Info
Property | Details |
---|---|
hf_name | eng - ine |
Source Languages | eng |
Target Languages | ine |
OPUS Readme URL | [https://github.com/Helsinki - NLP/Tatoeba - Challenge/tree/master/models/eng - ine/README.md](https://github.com/Helsinki - NLP/Tatoeba - Challenge/tree/master/models/eng - ine/README.md) |
Original Repo | Tatoeba - Challenge |
Tags | ['translation'] |
Languages | ['en', 'ca', 'es', 'os', 'ro', 'fy', 'cy', 'sc', 'is', 'yi', 'lb', 'an', 'sq', 'fr', 'ht', 'rm', 'ps', 'af', 'uk', 'sl', 'lt', 'bg', 'be', 'gd', 'si', 'br', 'mk', 'or', 'mr', 'ru', 'fo', 'co', 'oc', 'pl', 'gl', 'nb', 'bn', 'id', 'hy', 'da', 'gv', 'nl', 'pt', 'hi', 'as', 'kw', 'ga', 'sv', 'gu', 'wa', 'lv', 'el', 'it', 'hr', 'ur', 'nn', 'de', 'cs', 'ine'] |
Source Constituents | {'eng'} |
Target Constituents | {'cat', 'spa', 'pap', 'mwl', 'lij', 'bos_Latn', 'lad_Latn', 'lat_Latn', 'pcd', 'oss', 'ron', 'fry', 'cym', 'awa', 'swg', 'zsm_Latn', 'srd', 'gcf_Latn', 'isl', 'yid', 'bho', 'ltz', 'kur_Latn', 'arg', 'pes_Thaa', 'sqi', 'csb_Latn', 'fra', 'hat', 'non_Latn', 'sco', 'pnb', 'roh', 'bul_Latn', 'pus', 'afr', 'ukr', 'slv', 'lit', 'tmw_Latn', 'hsb', 'tly_Latn', 'bul', 'bel', 'got_Goth', 'lat_Grek', 'ext', 'gla', 'mai', 'sin', 'hif_Latn', 'eng', 'bre', 'nob_Hebr', 'prg_Latn', 'ang_Latn', 'aln', 'mkd', 'ori', 'mar', 'afr_Arab', 'san_Deva', 'gos', 'rus', 'fao', 'orv_Cyrl', 'bel_Latn', 'cos', 'zza', 'grc_Grek', 'oci', 'mfe', 'gom', 'bjn', 'sgs', 'tgk_Cyrl', 'hye_Latn', 'pdc', 'srp_Cyrl', 'pol', 'ast', 'glg', 'pms', 'nob', 'ben', 'min', 'srp_Latn', 'zlm_Latn', 'ind', 'rom', 'hye', 'scn', 'enm_Latn', 'lmo', 'npi', 'pes', 'dan', 'rus_Latn', 'jdt_Cyrl', 'gsw', 'glv', 'nld', 'snd_Arab', 'kur_Arab', 'por', 'hin', 'dsb', 'asm', 'lad', 'frm_Latn', 'ksh', 'pan_Guru', 'cor', 'gle', 'swe', 'guj', 'wln', 'lav', 'ell', 'frr', 'rue', 'ita', 'hrv', 'urd', 'stq', 'nno', 'deu', 'lld_Latn', 'ces', 'egl', 'vec', 'max_Latn', 'pes_Latn', 'ltg', 'nds'} |
Source Multilingual | False |
Target Multilingual | True |
Pre - processing | Normalization + SentencePiece (spm32k, spm32k) |
URL Model | [https://object.pouta.csc.fi/Tatoeba - MT - models/eng - ine/opus2m - 2020 - 08 - 01.zip](https://object.pouta.csc.fi/Tatoeba - MT - models/eng - ine/opus2m - 2020 - 08 - 01.zip) |
URL Test Set | [https://object.pouta.csc.fi/Tatoeba - MT - models/eng - ine/opus2m - 2020 - 08 - 01.test.txt](https://object.pouta.csc.fi/Tatoeba - MT - models/eng - ine/opus2m - 2020 - 08 - 01.test.txt) |
Source Alpha3 | eng |
Target Alpha3 | ine |
Short Pair | en - ine |
chrF2 Score | 0.539 |
BLEU | 32.6 |
Brevity Penalty | 0.973 |
Ref Len | 68664.0 |
Source Name | English |
Target Name | Indo - European languages |
Train Date | 2020 - 08 - 01 |
Source Alpha2 | en |
Target Alpha2 | ine |
Prefer Old | False |
Helsinki Git SHA | 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 |
Transformers Git SHA | 2207e5d8cb224e954a7cba69fa4ac23 |
📄 License
This project is licensed under the Apache - 2.0 license.

