đ wav2vec2-large-multilang-cv-ru
This model is a fine - tuned version of facebook/wav2vec2-large-xlsr-53 on the common_voice dataset, achieving certain results on the evaluation set.
đ Quick Start
This model is a fine - tuned version of facebook/wav2vec2-large-xlsr-53 on the common_voice
dataset. It achieves the following results on the evaluation set:
đ Documentation
Training and Evaluation Data
Although specific details about the training and evaluation data are not provided, this model is trained on the common_voice
dataset.
Training Procedure
Training Hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e - 08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP
Training Results
Training Loss |
Epoch |
Step |
Validation Loss |
Wer |
6.0328 |
0.79 |
500 |
3.0713 |
1.0 |
1.9426 |
1.58 |
1000 |
1.2048 |
0.9963 |
1.1285 |
2.37 |
1500 |
0.9825 |
0.9282 |
0.9462 |
3.15 |
2000 |
0.8836 |
0.8965 |
0.8274 |
3.94 |
2500 |
0.8134 |
0.8661 |
0.7106 |
4.73 |
3000 |
0.8033 |
0.8387 |
0.6545 |
5.52 |
3500 |
0.8309 |
0.8366 |
0.6013 |
6.31 |
4000 |
0.7667 |
0.8240 |
0.5599 |
7.1 |
4500 |
0.7740 |
0.8160 |
0.5027 |
7.89 |
5000 |
0.7796 |
0.8188 |
0.4588 |
8.68 |
5500 |
0.8204 |
0.7968 |
0.4448 |
9.46 |
6000 |
0.8277 |
0.7738 |
0.4122 |
10.25 |
6500 |
0.8292 |
0.7776 |
0.3816 |
11.04 |
7000 |
0.8548 |
0.7907 |
0.3587 |
11.83 |
7500 |
0.8245 |
0.7805 |
0.3374 |
12.62 |
8000 |
0.8371 |
0.7701 |
0.3214 |
13.41 |
8500 |
0.8311 |
0.7822 |
0.3072 |
14.2 |
9000 |
0.8940 |
0.7674 |
0.2929 |
14.98 |
9500 |
0.8788 |
0.7604 |
0.257 |
15.77 |
10000 |
0.8911 |
0.7633 |
0.2592 |
16.56 |
10500 |
0.8673 |
0.7604 |
0.2392 |
17.35 |
11000 |
0.9582 |
0.7810 |
0.232 |
18.14 |
11500 |
0.9340 |
0.7423 |
0.2252 |
18.93 |
12000 |
0.8874 |
0.7320 |
0.2079 |
19.72 |
12500 |
0.9436 |
0.7483 |
0.2003 |
20.5 |
13000 |
0.9573 |
0.7638 |
0.194 |
21.29 |
13500 |
0.9361 |
0.7308 |
0.188 |
22.08 |
14000 |
0.9704 |
0.7221 |
0.1754 |
22.87 |
14500 |
0.9668 |
0.7265 |
0.1688 |
23.66 |
15000 |
0.9680 |
0.7246 |
0.162 |
24.45 |
15500 |
0.9443 |
0.7066 |
0.1617 |
25.24 |
16000 |
0.9664 |
0.7265 |
0.1504 |
26.03 |
16500 |
0.9505 |
0.7189 |
0.1425 |
26.81 |
17000 |
0.9536 |
0.7112 |
0.134 |
27.6 |
17500 |
0.9674 |
0.7047 |
0.1301 |
28.39 |
18000 |
0.9852 |
0.7066 |
0.1314 |
29.18 |
18500 |
0.9766 |
0.7073 |
0.1219 |
29.97 |
19000 |
0.9734 |
0.7037 |
Framework Versions
- Transformers 4.19.2
- Pytorch 1.11.0
- Datasets 2.2.2
- Tokenizers 0.12.1
đ License
This model is released under the apache - 2.0
license.