đ NVIDIA Streaming Citrinet 1024 (en-US)
This model transcribes English speech, trained on thousands of hours of English speech data. It's a non - autoregressive "large" variant of Streaming Citrinet, compatible with NVIDIA Riva for production - grade deployments.
|
|
|
|
|
đ Quick Start
This model transcribes speech in lowercase English alphabet including spaces and apostrophes, and is trained on several thousand hours of English speech data.
It is a non - autoregressive "large" variant of Streaming Citrinet, with around 140 million parameters.
See the model architecture section and NeMo documentation for complete architecture details.
It is also compatible with NVIDIA Riva for production - grade server deployments.
⨠Features
- Transcribes English speech with lowercase alphabet, spaces, and apostrophes.
- Non - autoregressive "large" variant of Streaming Citrinet.
- Compatible with NVIDIA Riva for production - grade deployments.
đĻ Installation
To train, fine - tune or play with the model you will need to install NVIDIA NeMo. We recommend you install it after you've installed the latest PyTorch version.
pip install nemo_toolkit['all']
đģ Usage Examples
Basic Usage
Automatically instantiate the model
import nemo.collections.asr as nemo_asr
asr_model = nemo_asr.models.EncDecCTCModelBPE.from_pretrained("nvidia/stt_en_citrinet_1024_gamma_0_25")
Transcribing using Python
First, let's get a sample
wget https://dldata-public.s3.us-east-2.amazonaws.com/2086-149220-0033.wav
Then simply do:
output = asr_model.transcribe(['2086-149220-0033.wav'])
print(output[0].text)
Transcribing many audio files
python [NEMO_GIT_FOLDER]/examples/asr/transcribe_speech.py
pretrained_name="nvidia/stt_en_citrinet_1024_gamma_0_25"
audio_dir="<DIRECTORY CONTAINING AUDIO FILES>"
Advanced Usage
- Input: This model accepts 16000 kHz Mono - channel Audio (wav files) as input.
- Output: This model provides transcribed speech as a string for a given audio sample.
đ Documentation
Model Architecture
Streaming Citrinet - 1024 model is a non - autoregressive, streaming variant of Citrinet model [1] for Automatic Speech Recognition which uses CTC loss/decoding instead of Transducer. You may find more info on this model here: Citrinet Model.
Training
The NeMo toolkit [3] was used for training the model for over several hundred epochs. This model was trained with this example script and this base config.
The tokenizer for this models was built using the text transcripts of the train set with this script.
Datasets
All the models in this collection are trained on a composite dataset (NeMo ASRSET) comprising of several thousand hours of English speech:
- Librispeech 960 hours of English speech
- Fisher Corpus
- Switchboard - 1 Dataset
- WSJ - 0 and WSJ - 1
- National Speech Corpus (Part 1, Part 6)
Note: older versions of the model may have trained on smaller set of datasets.
Performance
The list of the available models in this collection is shown in the following table. Performances of the ASR models are reported in terms of Word Error Rate (WER%) with greedy decoding.
Version |
Tokenizer |
Vocabulary Size |
LS test - other |
LS test - clean |
WSJ Eval92 |
WSJ Dev93 |
NSC Part 1 |
Train Dataset |
1.0.0 |
SentencePiece Unigram |
1024 |
7.6 |
3.4 |
2.5 |
4.0 |
6.2 |
NeMo ASRSET 1.0 |
While deploying with NVIDIA Riva, you can combine this model with external language models to further improve WER. The WER(%) of the latest model with different language modeling techniques are reported in the following table.
Limitations
â ī¸ Important Note
Since this model was trained on publicly available speech datasets, the performance of this model might degrade for speech that includes technical terms, or vernacular that the model has not been trained on. The model might also perform worse for accented speech.
Deployment with NVIDIA Riva
đĄ Usage Tip
For the best real - time accuracy, latency, and throughput, deploy the model with NVIDIA Riva, an accelerated speech AI SDK deployable on - prem, in all clouds, multi - cloud, hybrid, at the edge, and embedded.
Additionally, Riva provides:
- World - class out - of - the - box accuracy for the most common languages with model checkpoints trained on proprietary data with hundreds of thousands of GPU - compute hours
- Best in class accuracy with run - time word boosting (e.g., brand and product names) and customization of acoustic model, language model, and inverse text normalization
- Streaming speech recognition, Kubernetes compatible scaling, and Enterprise - grade support
Check out Riva live demo.
đ License
This project is licensed under the cc - by - 4.0 license.
đ§ Technical Details
The model is a non - autoregressive "large" variant of Streaming Citrinet, with around 140 million parameters. It uses CTC loss/decoding instead of Transducer for Automatic Speech Recognition. The NeMo toolkit was used for training over several hundred epochs with specific scripts and configurations.
References
[1] Citrinet: Closing the Gap between Non - Autoregressive and Autoregressive End - to - End Models for Automatic Speech Recognition
[2] Google Sentencepiece Tokenizer
[3] NVIDIA NeMo Toolkit