🚀 VideoChat-Flash-Qwen2_5-7B_InternVideo2-1B⚡
VideoChat-Flash-Qwen2_5-7B_InternVideo2-1B is a multimodal model built on InternVideo2-1B and Qwen2.5-7B. It uses only 16 tokens per frame and can support input sequences of up to about 10,000 frames by extending the context window to 128k with Yarn.
[📰 Blog] [📂 GitHub] [📜 Tech Report] [🗨️ Chat Demo]
⚠️ Important Note
Due to a predominantly English training corpus, the model only exhibits basic Chinese comprehension. To ensure optimal performance, using English for interaction is recommended.
🚀 Quick Start
First, you need to install flash attention2 and some other modules. We provide a simple installation example below:
pip install transformers==4.40.1
pip install av
pip install imageio
pip install decord
pip install opencv-python
# optional
pip install flash-attn --no-build-isolation
Then you could use our model:
Basic Usage
from transformers import AutoModel, AutoTokenizer
import torch
model_path = 'OpenGVLab/VideoChat-Flash-Qwen2_5-7B_InternVideo2-1B'
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = AutoModel.from_pretrained(model_path, trust_remote_code=True).to(torch.bfloat16).cuda()
image_processor = model.get_vision_tower().image_processor
mm_llm_compress = False
if mm_llm_compress:
model.config.mm_llm_compress = True
model.config.llm_compress_type = "uniform0_attention"
model.config.llm_compress_layer_list = [4, 18]
model.config.llm_image_token_ratio_list = [1, 0.75, 0.25]
else:
model.config.mm_llm_compress = False
max_num_frames = 512
generation_config = dict(
do_sample=False,
temperature=0.0,
max_new_tokens=1024,
top_p=0.1,
num_beams=1
)
video_path = "your_video.mp4"
question1 = "Describe this video in detail."
output1, chat_history = model.chat(video_path=video_path, tokenizer=tokenizer, user_prompt=question1, return_history=True, max_num_frames=max_num_frames, generation_config=generation_config)
print(output1)
question2 = "How many people appear in the video?"
output2, chat_history = model.chat(video_path=video_path, tokenizer=tokenizer, user_prompt=question2, chat_history=chat_history, return_history=True, max_num_frames=max_num_frames, generation_config=generation_config)
print(output2)
✨ Features
VideoChat-Flash-Qwen2_5-7B_InternVideo2-1B is constructed upon InternVideo2-1B and Qwen2.5-7B, employing only 16 tokens per frame. By leveraging Yarn to extend the context window to 128k (Qwen2's native context window is 32k), our model supports input sequences of up to approximately 10,000 frames.
📈 Performance
📚 Documentation
Model Information
Property |
Details |
Model Type |
VideoChat-Flash-Qwen2_5-7B_InternVideo2-1B |
Training Data |
Not provided |
Evaluation Results
Task Type |
Dataset Name |
Accuracy |
Multimodal |
MLVU |
73.4 |
Multimodal |
MVBench |
74.3 |
Multimodal |
Perception Test |
76.3 |
Multimodal |
LongVideoBench |
64.5 |
Multimodal |
VideoMME (wo sub) |
65.2 |
Multimodal |
LVBench |
48.7 |
✏️ Citation
@article{li2024videochatflash,
title={VideoChat-Flash: Hierarchical Compression for Long-Context Video Modeling},
author={Li, Xinhao and Wang, Yi and Yu, Jiashuo and Zeng, Xiangyu and Zhu, Yuhan and Huang, Haian and Gao, Jianfei and Li, Kunchang and He, Yinan and Wang, Chenting and others},
journal={arXiv preprint arXiv:2501.00574},
year={2024}
}
📄 License
This project is licensed under the Apache-2.0 license.