🚀 layoutlmv2-base-uncased_finetuned_docvqa
This model is a fine - tuned version of microsoft/layoutlmv2-base-uncased on an unknown dataset. It helps in specific tasks related to document question - answering. The evaluation set shows a loss of 5.3353, which can be used as a reference for its performance.
📚 Documentation
Model Information
Property |
Details |
Model Type |
A fine - tuned version of microsoft/layoutlmv2 - base - uncased |
License |
CC - BY - NC - SA - 4.0 |
Training and Evaluation
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e - 05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon = 1e - 08
- lr_scheduler_type: linear
- num_epochs: 20
Training results
Training Loss |
Epoch |
Step |
Validation Loss |
0.153 |
0.22 |
50 |
5.3909 |
0.2793 |
0.44 |
100 |
5.0150 |
0.2634 |
0.66 |
150 |
4.6620 |
0.5192 |
0.88 |
200 |
4.7826 |
0.3096 |
1.11 |
250 |
4.9532 |
0.2638 |
1.33 |
300 |
5.2584 |
0.4727 |
1.55 |
350 |
4.0943 |
0.2763 |
1.77 |
400 |
4.8408 |
1.0425 |
1.99 |
450 |
5.0344 |
0.4477 |
2.21 |
500 |
4.9084 |
0.3266 |
2.43 |
550 |
5.0996 |
0.3085 |
2.65 |
600 |
4.4858 |
0.4648 |
2.88 |
650 |
4.0630 |
0.1845 |
3.1 |
700 |
5.3969 |
0.1616 |
3.32 |
750 |
4.8225 |
0.1752 |
3.54 |
800 |
5.2945 |
0.1877 |
3.76 |
850 |
5.2358 |
0.3172 |
3.98 |
900 |
5.2205 |
0.1627 |
4.2 |
950 |
4.9991 |
0.2548 |
4.42 |
1000 |
4.6917 |
0.1566 |
4.65 |
1050 |
5.1266 |
0.2616 |
4.87 |
1100 |
4.3241 |
0.1199 |
5.09 |
1150 |
4.9821 |
0.1372 |
5.31 |
1200 |
5.0838 |
0.1198 |
5.53 |
1250 |
5.0156 |
0.0558 |
5.75 |
1300 |
4.8638 |
0.1331 |
5.97 |
1350 |
4.9492 |
0.0689 |
6.19 |
1400 |
4.6926 |
0.0912 |
6.42 |
1450 |
4.5153 |
0.0495 |
6.64 |
1500 |
4.6969 |
0.0853 |
6.86 |
1550 |
4.7690 |
0.1072 |
7.08 |
1600 |
4.6783 |
0.034 |
7.3 |
1650 |
4.7351 |
0.2999 |
7.52 |
1700 |
4.5185 |
0.0763 |
7.74 |
1750 |
4.5825 |
0.0799 |
7.96 |
1800 |
4.7218 |
0.0343 |
8.19 |
1850 |
5.1508 |
0.0396 |
8.41 |
1900 |
5.4893 |
0.033 |
8.63 |
1950 |
5.5167 |
0.0295 |
8.85 |
2000 |
5.6252 |
0.2303 |
9.07 |
2050 |
4.7031 |
0.088 |
9.29 |
2100 |
4.7323 |
0.0666 |
9.51 |
2150 |
4.8688 |
0.0597 |
9.73 |
2200 |
5.6007 |
0.0615 |
9.96 |
2250 |
5.5403 |
0.1003 |
10.18 |
2300 |
5.3198 |
0.0457 |
10.4 |
2350 |
5.4828 |
0.0391 |
10.62 |
2400 |
5.5312 |
0.0325 |
10.84 |
2450 |
5.7410 |
0.0147 |
11.06 |
2500 |
5.8749 |
0.1013 |
11.28 |
2550 |
5.6522 |
0.001 |
11.5 |
2600 |
5.7776 |
0.0002 |
11.73 |
2650 |
5.8431 |
0.03 |
11.95 |
2700 |
5.9751 |
0.0452 |
12.17 |
2750 |
5.6928 |
0.0002 |
12.39 |
2800 |
5.6264 |
0.0109 |
12.61 |
2850 |
5.2688 |
0.0801 |
12.83 |
2900 |
5.2780 |
0.0216 |
13.05 |
2950 |
5.3691 |
0.0002 |
13.27 |
3000 |
5.5237 |
0.0092 |
13.5 |
3050 |
5.3662 |
0.0124 |
13.72 |
3100 |
5.4474 |
0.0515 |
13.94 |
3150 |
5.3623 |
0.0032 |
14.16 |
3200 |
5.4168 |
0.0051 |
14.38 |
3250 |
5.2897 |
0.0002 |
14.6 |
3300 |
5.3205 |
0.014 |
14.82 |
3350 |
5.2114 |
0.0004 |
15.04 |
3400 |
5.2342 |
0.0104 |
15.27 |
3450 |
5.2562 |
0.0107 |
15.49 |
3500 |
5.1112 |
0.0002 |
15.71 |
3550 |
5.1515 |
0.0002 |
15.93 |
3600 |
5.2054 |
0.0002 |
16.15 |
3650 |
5.1968 |
0.0003 |
16.37 |
3700 |
5.3196 |
0.0246 |
16.59 |
3750 |
5.3111 |
0.0054 |
16.81 |
3800 |
5.3335 |
0.0001 |
17.04 |
3850 |
5.3488 |
0.0243 |
17.26 |
3900 |
5.2597 |
0.0217 |
17.48 |
3950 |
5.2834 |
0.0002 |
17.7 |
4000 |
5.2947 |
0.0002 |
17.92 |
4050 |
5.3131 |
0.0001 |
18.14 |
4100 |
5.3240 |
0.0016 |
18.36 |
4150 |
5.3129 |
0.0133 |
18.58 |
4200 |
5.3241 |
0.0002 |
18.81 |
4250 |
5.3382 |
0.0159 |
19.03 |
4300 |
5.3764 |
0.003 |
19.25 |
4350 |
5.3776 |
0.0516 |
19.47 |
4400 |
5.3389 |
0.016 |
19.69 |
4450 |
5.3275 |
0.0105 |
19.91 |
4500 |
5.3353 |
Framework versions
- Transformers 4.33.2
- Pytorch 2.0.1+cpu
- Datasets 2.14.5
- Tokenizers 0.13.3
📄 License
This model is licensed under CC - BY - NC - SA - 4.0.