đ layoutlmv2-base-uncased_finetuned_docvqa
This model is a fine - tuned version of microsoft/layoutlmv2-base-uncased on an unknown dataset. It helps to achieve better performance on specific tasks. On the evaluation set, it achieves a loss of 4.6788.
đ Quick Start
This model is ready to be used right away after fine - tuning. You can load it using relevant libraries and start applying it to your tasks.
đ Documentation
Model description
This model is a fine - tuned version of microsoft/layoutlmv2-base-uncased. However, more detailed information about its specific improvements and characteristics is yet to be provided.
Intended uses & limitations
More information about the intended uses and limitations of this model is needed.
Training and evaluation data
Details about the training and evaluation data are not provided yet.
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
Property |
Details |
learning_rate |
5e - 05 |
train_batch_size |
4 |
eval_batch_size |
8 |
seed |
42 |
optimizer |
Adam with betas=(0.9,0.999) and epsilon = 1e - 08 |
lr_scheduler_type |
linear |
num_epochs |
20 |
Training results
Training Loss |
Epoch |
Step |
Validation Loss |
5.3193 |
0.22 |
50 |
4.5453 |
4.5115 |
0.44 |
100 |
4.1632 |
4.1316 |
0.66 |
150 |
3.8496 |
3.7911 |
0.88 |
200 |
3.7418 |
3.5175 |
1.11 |
250 |
3.9454 |
3.2171 |
1.33 |
300 |
3.0430 |
3.0377 |
1.55 |
350 |
3.1317 |
3.1081 |
1.77 |
400 |
2.8709 |
2.6219 |
1.99 |
450 |
2.9745 |
2.2922 |
2.21 |
500 |
3.0184 |
2.2245 |
2.43 |
550 |
2.6649 |
2.0918 |
2.65 |
600 |
2.3156 |
2.0339 |
2.88 |
650 |
2.4970 |
1.7088 |
3.1 |
700 |
2.2817 |
1.4584 |
3.32 |
750 |
2.3237 |
1.4296 |
3.54 |
800 |
2.1868 |
1.4413 |
3.76 |
850 |
2.2775 |
1.4055 |
3.98 |
900 |
2.6660 |
1.0251 |
4.2 |
950 |
2.6155 |
1.1251 |
4.42 |
1000 |
2.9841 |
1.059 |
4.65 |
1050 |
2.7376 |
1.0179 |
4.87 |
1100 |
3.7345 |
1.1128 |
5.09 |
1150 |
2.6704 |
0.8461 |
5.31 |
1200 |
3.0422 |
0.86 |
5.53 |
1250 |
3.2093 |
0.9124 |
5.75 |
1300 |
3.2782 |
0.8687 |
5.97 |
1350 |
3.1477 |
0.7039 |
6.19 |
1400 |
2.6896 |
0.8908 |
6.42 |
1450 |
3.0843 |
0.7408 |
6.64 |
1500 |
2.9585 |
0.6026 |
6.86 |
1550 |
3.3629 |
0.4852 |
7.08 |
1600 |
3.1505 |
0.5496 |
7.3 |
1650 |
3.6285 |
0.5578 |
7.52 |
1700 |
3.3481 |
0.5897 |
7.74 |
1750 |
3.3201 |
0.4487 |
7.96 |
1800 |
3.1462 |
0.2182 |
8.19 |
1850 |
3.7251 |
0.3524 |
8.41 |
1900 |
3.5870 |
0.4516 |
8.63 |
1950 |
3.6300 |
0.5658 |
8.85 |
2000 |
3.1085 |
0.4877 |
9.07 |
2050 |
3.5353 |
0.2226 |
9.29 |
2100 |
3.6744 |
0.2544 |
9.51 |
2150 |
4.1244 |
0.6194 |
9.73 |
2200 |
3.4775 |
0.3759 |
9.96 |
2250 |
3.7031 |
0.2718 |
10.18 |
2300 |
3.6076 |
0.1322 |
10.4 |
2350 |
3.6885 |
0.2596 |
10.62 |
2400 |
3.9328 |
0.1675 |
10.84 |
2450 |
4.1439 |
0.158 |
11.06 |
2500 |
4.4306 |
0.1462 |
11.28 |
2550 |
4.3744 |
0.2187 |
11.5 |
2600 |
4.4111 |
0.264 |
11.73 |
2650 |
3.9780 |
0.1997 |
11.95 |
2700 |
4.2383 |
0.1369 |
12.17 |
2750 |
4.1329 |
0.1204 |
12.39 |
2800 |
4.2738 |
0.2001 |
12.61 |
2850 |
4.0106 |
0.2132 |
12.83 |
2900 |
4.1816 |
0.1472 |
13.05 |
2950 |
4.4600 |
0.0603 |
13.27 |
3000 |
4.0050 |
0.0911 |
13.5 |
3050 |
4.1838 |
0.1016 |
13.72 |
3100 |
4.4429 |
0.0887 |
13.94 |
3150 |
4.1510 |
0.0495 |
14.16 |
3200 |
4.2938 |
0.0677 |
14.38 |
3250 |
4.6133 |
0.1263 |
14.6 |
3300 |
4.4634 |
0.1953 |
14.82 |
3350 |
3.9348 |
0.0212 |
15.04 |
3400 |
4.1726 |
0.0082 |
15.27 |
3450 |
4.3512 |
0.0432 |
15.49 |
3500 |
4.2992 |
0.0975 |
15.71 |
3550 |
4.2274 |
0.0933 |
15.93 |
3600 |
4.4028 |
0.024 |
16.15 |
3650 |
4.4662 |
0.0964 |
16.37 |
3700 |
4.3964 |
0.0487 |
16.59 |
3750 |
4.4827 |
0.0147 |
16.81 |
3800 |
4.5577 |
0.0951 |
17.04 |
3850 |
4.5640 |
0.0508 |
17.26 |
3900 |
4.4473 |
0.1163 |
17.48 |
3950 |
4.4565 |
0.0151 |
17.7 |
4000 |
4.5511 |
0.0569 |
17.92 |
4050 |
4.5298 |
0.0639 |
18.14 |
4100 |
4.5417 |
0.0155 |
18.36 |
4150 |
4.6398 |
0.0107 |
18.58 |
4200 |
4.7664 |
0.0044 |
18.81 |
4250 |
4.8119 |
0.0906 |
19.03 |
4300 |
4.7168 |
0.0533 |
19.25 |
4350 |
4.7032 |
0.0496 |
19.47 |
4400 |
4.6918 |
0.0938 |
19.69 |
4450 |
4.6824 |
0.0483 |
19.91 |
4500 |
4.6788 |
Framework versions
Property |
Details |
Transformers |
4.38.1 |
Pytorch |
2.2.1 |
Datasets |
2.17.1 |
Tokenizers |
0.15.2 |
đ License
This model is released under the CC - BY - NC - SA 4.0 license.