Model Overview
Model Features
Model Capabilities
Use Cases
🚀 Multi-GPU inference with vLLM
This project enables multi-GPU inference using vLLM, specifically designed for the Qwen2.5-VL-72B-Instruct model. It provides a seamless way to perform inference on large-scale vision-language models with multiple GPUs.
📦 Installation
To run the multi-GPU inference, you can use the following Docker command:
docker run -it --name iddt-ben-qwen25vl72 --gpus '"device=0,1"' -v huggingface:/root/.cache/huggingface --shm-size=32g -p 30000:8000 --ipc=host benasd/vllm:latest --model Benasd/Qwen2.5-VL-72B-Instruct-AWQ --dtype float16 --quantization awq -tp 2
✨ Features
- Multi-GPU Support: Utilize multiple GPUs for faster inference.
- Quantization: Support for AWQ quantization to reduce memory usage.
- Easy Deployment: Use Docker for easy deployment and management.
💻 Usage Examples
The following sections provide detailed usage examples for different scenarios.
Basic Usage
Here is a simple example of using the model for inference:
from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessor
from qwen_vl_utils import process_vision_info
# default: Load the model on the available device(s)
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen2.5-VL-72B-Instruct", torch_dtype="auto", device_map="auto"
)
# We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios.
# model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
# "Qwen/Qwen2.5-VL-72B-Instruct",
# torch_dtype=torch.bfloat16,
# attn_implementation="flash_attention_2",
# device_map="auto",
# )
# default processer
processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-72B-Instruct")
# The default range for the number of visual tokens per image in the model is 4-16384.
# You can set min_pixels and max_pixels according to your needs, such as a token range of 256-1280, to balance performance and cost.
# min_pixels = 256*28*28
# max_pixels = 1280*28*28
# processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-72B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels)
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
},
{"type": "text", "text": "Describe this image."},
],
}
]
# Preparation for inference
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
# Inference: Generation of the output
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)
Multi-image Inference
# Messages containing multiple images and a text query
messages = [
{
"role": "user",
"content": [
{"type": "image", "image": "file:///path/to/image1.jpg"},
{"type": "image", "image": "file:///path/to/image2.jpg"},
{"type": "text", "text": "Identify the similarities between these images."},
],
}
]
# Preparation for inference
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
# Inference
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)
Video Inference
# Messages containing a images list as a video and a text query
messages = [
{
"role": "user",
"content": [
{
"type": "video",
"video": [
"file:///path/to/frame1.jpg",
"file:///path/to/frame2.jpg",
"file:///path/to/frame3.jpg",
"file:///path/to/frame4.jpg",
],
},
{"type": "text", "text": "Describe this video."},
],
}
]
# Messages containing a local video path and a text query
messages = [
{
"role": "user",
"content": [
{
"type": "video",
"video": "file:///path/to/video1.mp4",
"max_pixels": 360 * 420,
"fps": 1.0,
},
{"type": "text", "text": "Describe this video."},
],
}
]
# Messages containing a video url and a text query
messages = [
{
"role": "user",
"content": [
{
"type": "video",
"video": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2-VL/space_woaudio.mp4",
},
{"type": "text", "text": "Describe this video."},
],
}
]
#In Qwen 2.5 VL, frame rate information is also input into the model to align with absolute time.
# Preparation for inference
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
fps=fps,
padding=True,
return_tensors="pt",
**video_kwargs,
)
inputs = inputs.to("cuda")
# Inference
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)
Batch Inference
# Sample messages for batch inference
messages1 = [
{
"role": "user",
"content": [
{"type": "image", "image": "file:///path/to/image1.jpg"},
{"type": "image", "image": "file:///path/to/image2.jpg"},
{"type": "text", "text": "What are the common elements in these pictures?"},
],
}
]
messages2 = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Who are you?"},
]
# Combine messages for batch processing
messages = [messages1, messages2]
# Preparation for batch inference
texts = [
processor.apply_chat_template(msg, tokenize=False, add_generation_prompt=True)
for msg in messages
]
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=texts,
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
# Batch Inference
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_texts = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_texts)
📚 Documentation
Introduction to Qwen2.5-VL-72B-Instruct
In the past five months since Qwen2-VL’s release, numerous developers have built new models on the Qwen2-VL vision-language models, providing us with valuable feedback. During this period, we focused on building more useful vision-language models. Today, we are excited to introduce the latest addition to the Qwen family: Qwen2.5-VL.
Key Enhancements
- Understand things visually: Qwen2.5-VL is not only proficient in recognizing common objects such as flowers, birds, fish, and insects, but it is highly capable of analyzing texts, charts, icons, graphics, and layouts within images.
- Being agentic: Qwen2.5-VL directly plays as a visual agent that can reason and dynamically direct tools, which is capable of computer use and phone use.
- Understanding long videos and capturing events: Qwen2.5-VL can comprehend videos of over 1 hour, and this time it has a new ability of capturing events by pinpointing the relevant video segments.
- Capable of visual localization in different formats: Qwen2.5-VL can accurately localize objects in an image by generating bounding boxes or points, and it can provide stable JSON outputs for coordinates and attributes.
- Generating structured outputs: for data like scans of invoices, forms, tables, etc. Qwen2.5-VL supports structured outputs of their contents, benefiting usages in finance, commerce, etc.
Model Architecture Updates
- Dynamic Resolution and Frame Rate Training for Video Understanding: We extend dynamic resolution to the temporal dimension by adopting dynamic FPS sampling, enabling the model to comprehend videos at various sampling rates. Accordingly, we update mRoPE in the time dimension with IDs and absolute time alignment, enabling the model to learn temporal sequence and speed, and ultimately acquire the ability to pinpoint specific moments.
- Streamlined and Efficient Vision Encoder We enhance both training and inference speeds by strategically implementing window attention into the ViT. The ViT architecture is further optimized with SwiGLU and RMSNorm, aligning it with the structure of the Qwen2.5 LLM.
We have three models with 3, 7 and 72 billion parameters. This repo contains the instruction-tuned 72B Qwen2.5-VL model. For more information, visit our Blog and GitHub.
Evaluation
Image benchmark
Benchmarks | GPT4o | Claude3.5 Sonnet | Gemini-2-flash | InternVL2.5-78B | Qwen2-VL-72B | Qwen2.5-VL-72B |
---|---|---|---|---|---|---|
MMMUval | 70.3 | 70.4 | 70.7 | 70.1 | 64.5 | 70.2 |
MMMU_Pro | 54.5 | 54.7 | 57.0 | 48.6 | 46.2 | 51.1 |
MathVista_MINI | 63.8 | 65.4 | 73.1 | 76.6 | 70.5 | 74.8 |
MathVision_FULL | 30.4 | 38.3 | 41.3 | 32.2 | 25.9 | 38.1 |
Hallusion Bench | 55.0 | 55.16 | 57.4 | 58.1 | 55.16 | |
MMBench_DEV_EN_V11 | 82.1 | 83.4 | 83.0 | 88.5 | 86.6 | 88 |
AI2D_TEST | 84.6 | 81.2 | 89.1 | 88.1 | 88.4 | |
ChartQA_TEST | 86.7 | 90.8 | 85.2 | 88.3 | 88.3 | 89.5 |
DocVQA_VAL | 91.1 | 95.2 | 92.1 | 96.5 | 96.1 | 96.4 |
MMStar | 64.7 | 65.1 | 69.4 | 69.5 | 68.3 | 70.8 |
MMVet_turbo | 69.1 | 70.1 | 72.3 | 74.0 | 76.19 | |
OCRBench | 736 | 788 | 854 | 877 | 885 | |
OCRBench-V2(en/zh) | 46.5/32.3 | 45.2/39.6 | 51.9/43.1 | 45/46.2 | 47.8/46.1 | 61.5/63.7 |
CC-OCR | 66.6 | 62.7 | 73.0 | 64.7 | 68.7 | 79.8 |
Video benchmark
Benchmarks | GPT4o | Gemini-1.5-Pro | InternVL2.5-78B | Qwen2VL-72B | Qwen2.5VL-72B |
---|---|---|---|---|---|
VideoMME w/o sub. | 71.9 | 75.0 | 72.1 | 71.2 | 73.3 |
VideoMME w sub. | 77.2 | 81.3 | 74.0 | 77.8 | 79.1 |
MVBench | 64.6 | 60.5 | 76.4 | 73.6 | 70.4 |
MMBench-Video | 1.63 | 1.30 | 1.97 | 1.70 | 2.02 |
LVBench | 30.8 | 33.1 | - | 41.3 | 47.3 |
EgoSchema | 72.2 | 71.2 | - | 77.9 | 76.2 |
PerceptionTest_test | - | - | - | 68.0 | 73.2 |
MLVU_M-Avg_dev | 64.6 | - | 75.7 | 74.6 | |
TempCompass_overall | 73.8 | - | - | 74.8 |
Agent benchmark
Benchmarks | GPT4o | Gemini 2.0 | Claude | Aguvis-72B | Qwen2VL-72B | Qwen2.5VL-72B |
---|---|---|---|---|---|---|
ScreenSpot | 18.1 | 84.0 | 83.0 | 87.1 | ||
ScreenSpot Pro | 17.1 | 1.6 | 43.6 | |||
AITZ_EM | 35.3 | 72.8 | 83.2 | |||
Android Control High_EM | 66.4 | 59.1 | 67.36 | |||
Android Control Low_EM | 84.4 | 59.2 | 93.7 | |||
AndroidWorld_SR | 34.5% (SoM) | 27.9% | 26.1% | 35% | ||
MobileMiniWob++_SR | 66% | 68% | ||||
OSWorld | 14.90 | 10.26 | 8.83 |
🔧 Technical Details
Requirements
The code of Qwen2.5-VL has been in the latest Hugging face transformers and we advise you to build from source with command:
pip install git+https://github.com/huggingface/transformers accelerate
or you might encounter the following error:
KeyError: 'qwen2_5_vl'
More Usage Tips
- Input Formats: For input images, we support local files, base64, and URLs. For videos, we currently only support local files.
# You can directly insert a local file path, a URL, or a base64-encoded image into the position where you want in the text.
## Local file path
messages = [
{
"role": "user",
"content": [
{"type": "image", "image": "file:///path/to/your/image.jpg"},
{"type": "text", "text": "Describe this image."},
],
}
]
## Image URL
messages = [
{
"role": "user",
"content": [
{"type": "image", "image": "http://path/to/your/image.jpg"},
{"type": "text", "text": "Describe this image."},
],
}
]
## Base64 encoded image
messages = [
{
"role": "user",
"content": [
{"type": "image", "image": "data:image;base64,/9j/..."},
{"type": "text", "text": "Describe this image."},
],
}
]
- Image Resolution for Performance Boost: The model supports a wide range of resolution inputs. By default, it uses the native resolution for input, but higher resolutions can enhance performance at the cost of more computation. Users can set the minimum and maximum number of pixels to achieve an optimal configuration for their needs, such as a token count range of 256-1280, to balance speed and memory usage.
min_pixels = 256 * 28 * 28
max_pixels = 1280 * 28 * 28
processor = AutoProcessor.from_pretrained(
"Qwen/Qwen2.5-VL-72B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels
)
- Processing Long Texts: The current
config.json
is set for context length up to 32,768 tokens. To handle extensive inputs exceeding 32,768 tokens, we utilize YaRN, a technique for enhancing model length extrapolation, ensuring optimal performance on lengthy texts.
For supported frameworks, you could add the following to config.json
to enable YaRN:
{
...,
"type": "yarn",
"mrope_section": [
16,
24,
24
],
"factor": 4,
"original_max_position_embeddings": 32768
}
📄 License
This project is licensed under the Qwen License.







