đ DeBERTa: Decoding-enhanced BERT with Disentangled Attention
DeBERTa improves the BERT and RoBERTa models using disentangled attention and an enhanced mask decoder. It outperforms BERT and RoBERTa on the majority of NLU tasks with 80GB of training data.
Please check the official repository for more details and updates.
đ Quick Start
The following sections provide fine - tuning results on NLU tasks and usage notes for different models.
⨠Features
- Disentangled Attention: DeBERTa uses disentangled attention to improve the performance of the model.
- Enhanced Mask Decoder: It has an enhanced mask decoder to enhance the decoding ability.
- High Performance: Outperforms BERT and RoBERTa on most NLU tasks.
đ Documentation
Fine - tuning on NLU tasks
We present the dev results on SQuAD 1.1/2.0 and several GLUE benchmark tasks.
Model |
SQuAD 1.1 |
SQuAD 2.0 |
MNLI - m/mm |
SST - 2 |
QNLI |
CoLA |
RTE |
MRPC |
QQP |
STS - B |
|
F1/EM |
F1/EM |
Acc |
Acc |
Acc |
MCC |
Acc |
Acc/F1 |
Acc/F1 |
P/S |
BERT - Large |
90.9/84.1 |
81.8/79.0 |
86.6/- |
93.2 |
92.3 |
60.6 |
70.4 |
88.0/- |
91.3/- |
90.0/- |
RoBERTa - Large |
94.6/88.9 |
89.4/86.5 |
90.2/- |
96.4 |
93.9 |
68.0 |
86.6 |
90.9/- |
92.2/- |
92.4/- |
XLNet - Large |
95.1/89.7 |
90.6/87.9 |
90.8/- |
97.0 |
94.9 |
69.0 |
85.9 |
90.8/- |
92.3/- |
92.5/- |
[DeBERTa - Large](https://huggingface.co/microsoft/deberta - large)1 |
95.5/90.1 |
90.7/88.0 |
91.3/91.1 |
96.5 |
95.3 |
69.5 |
91.0 |
92.6/94.6 |
92.3/- |
92.8/92.5 |
[DeBERTa - XLarge](https://huggingface.co/microsoft/deberta - xlarge)1 |
-/- |
-/- |
91.5/91.2 |
97.0 |
- |
- |
93.1 |
92.1/94.3 |
- |
92.9/92.7 |
[DeBERTa - V2 - XLarge](https://huggingface.co/microsoft/deberta - v2 - xlarge)1 |
95.8/90.8 |
91.4/88.9 |
91.7/91.6 |
97.5 |
95.8 |
71.1 |
93.9 |
92.0/94.2 |
92.3/89.8 |
92.9/92.9 |
[DeBERTa - V2 - XXLarge](https://huggingface.co/microsoft/deberta - v2 - xxlarge)1,2 |
96.1/91.4 |
92.2/89.7 |
91.7/91.9 |
97.2 |
96.0 |
72.0 |
93.5 |
93.1/94.9 |
92.7/90.3 |
93.2/93.1 |
Notes
- 1 Following RoBERTa, for RTE, MRPC, STS - B, we fine - tune the tasks based on [DeBERTa - Large - MNLI](https://huggingface.co/microsoft/deberta - large - mnli), [DeBERTa - XLarge - MNLI](https://huggingface.co/microsoft/deberta - xlarge - mnli), [DeBERTa - V2 - XLarge - MNLI](https://huggingface.co/microsoft/deberta - v2 - xlarge - mnli), [DeBERTa - V2 - XXLarge - MNLI](https://huggingface.co/microsoft/deberta - v2 - xxlarge - mnli). The results of SST - 2/QQP/QNLI/SQuADv2 will also be slightly improved when starting from MNLI fine - tuned models. However, we only report the numbers fine - tuned from pretrained base models for those 4 tasks.
- 2 To try the XXLarge model with HF transformers, you need to specify --sharded_ddp
cd transformers/examples/text - classification/
export TASK_NAME=mrpc
python -m torch.distributed.launch --nproc_per_node=8 run_glue.py --model_name_or_path microsoft/deberta - v2 - xxlarge \
--task_name $TASK_NAME --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 \
--learning_rate 3e - 6 --num_train_epochs 3 --output_dir /tmp/$TASK_NAME/ --overwrite_output_dir --sharded_ddp --fp16
Citation
If you find DeBERTa useful for your work, please cite the following paper:
@inproceedings{
he2021deberta,
title={DEBERTA: DECODING - ENHANCED BERT WITH DISENTANGLED ATTENTION},
author={Pengcheng He and Xiaodong Liu and Jianfeng Gao and Weizhu Chen},
booktitle={International Conference on Learning Representations},
year={2021},
url={https://openreview.net/forum?id=XPZIaotutsD}
}
đ License
This project is licensed under the MIT license.