Gemini 2.0 Flash Lite (Preview)
Gemini 2.0 Flash Lite (Preview)
A Gemini 2.0 Flash model optimized for cost - effectiveness and low latency
Intelligence(Relatively Weak)
Speed(Fast)
Input Supported Modalities
Yes
Is Reasoning Model
1,000,000
Context Window
8,192
Maximum Output Tokens
2024-06-01
Knowledge Cutoff
Pricing
¥0.58 /M tokens
Input
¥2.16 /M tokens
Output
¥0.94 /M tokens
Blended Price
Quick Simple Comparison
Gemini 1.5 Pro (May '24)
¥2.5
Gemini 2.0 Pro Experimental (Feb '25)
Gemini 1.5 Pro (Sep '24)
¥2.5
Basic Parameters
GPT-4.1 Technical Parameters
Parameter Count
Not Announced
Context Length
1.0M tokens
Training Data Cutoff
2024-06-01
Open Source Category
Proprietary
Multimodal Support
Text, Image
Throughput
85
Release Date
2025-02-05
Response Speed
214.07,271 tokens/s
Benchmark Scores
Below is the performance of claude-monet in various standard benchmark tests. These tests evaluate the model's capabilities in different tasks and domains.
Intelligence Index
4084
Large Language Model Intelligence Level
Coding Index
2127
Indicator of AI model performance on coding tasks
Math Index
-
Capability indicator in solving mathematical problems, mathematical reasoning, or performing math-related tasks
MMLU Pro
71.6
Massive Multitask Multimodal Understanding - Testing understanding of text, images, audio, and video
GPQA
54.2
Graduate Physics Questions Assessment - Testing advanced physics knowledge with diamond science-level questions
HLE
4.4
The model's comprehensive average score on the Hugging Face Open LLM Leaderboard
LiveCodeBench
17.9
Specific evaluation focused on assessing large language models' ability in real-world code writing and solving programming competition problems
SciCode
24.7
The model's capability in code generation for scientific computing or specific scientific domains
HumanEval
89.6
Score achieved by the AI model on the specific HumanEval benchmark test set
Math 500 Score
87.3
Score on the first 500 larger, more well-known mathematical benchmark tests
AIME Score
30.3
An indicator measuring an AI model's ability to solve high-difficulty mathematical competition problems (specifically AIME level)
Featured Recommended AI Models
Gemini 2.0 Flash Lite (Preview)
google

¥0.58
Input tokens/million
¥2.16
Output tokens/million
1M
Context Length
Gemini 1.0 Pro
google

¥3.6
Input tokens/million
¥10.8
Output tokens/million
33k
Context Length
Qwen2.5 Coder Instruct 32B
alibaba

¥0.65
Input tokens/million
¥0.65
Output tokens/million
131k
Context Length
GPT 4
openai

¥216
Input tokens/million
¥432
Output tokens/million
8192
Context Length
Gemini 1.5 Flash 8B
google

¥0.58
Input tokens/million
¥2.16
Output tokens/million
1M
Context Length
Gemma 3 4B Instruct
google

-
Input tokens/million
-
Output tokens/million
128k
Context Length
Gemini 2.0 Pro Experimental (Feb '25)
google

-
Input tokens/million
-
Output tokens/million
2M
Context Length
Llama 3.2 Instruct 11B (Vision)
meta

¥0.43
Input tokens/million
¥0.43
Output tokens/million
128k
Context Length