🚀 CAMeLBERT-DA诗歌分类模型
CAMeLBERT-DA诗歌分类模型 是一个诗歌分类模型,它通过微调 CAMeLBERT方言阿拉伯语(DA) 模型构建而成。该模型可用于对阿拉伯语诗歌进行分类,为相关的自然语言处理任务提供支持。
🚀 快速开始
你可以将CAMeLBERT - DA诗歌分类模型作为transformers管道的一部分使用。该模型很快也将在 CAMeL Tools 中可用。
如何使用
要使用transformers管道来使用该模型:
>>> from transformers import pipeline
>>> poetry = pipeline('text-classification', model='CAMeL-Lab/bert-base-arabic-camelbert-da-poetry')
>>>
>>> verses = [
['الخيل والليل والبيداء تعرفني' ,'والسيف والرمح والقرطاس والقلم'],
['قم للمعلم وفه التبجيلا' ,'كاد المعلم ان يكون رسولا']
]
>>>
>>> join_verse = lambda half: ' [SEP] '.join(half)
>>>
>>> verses = [join_verse(verse) for verse in verses]
>>> poetry(sentences)
[{'label': 'البسيط', 'score': 0.9874765276908875},
{'label': 'السلسلة', 'score': 0.6877778172492981}]
⚠️ 重要提示
要下载我们的模型,你需要 transformers>=3.5.0
。否则,你可以手动下载模型。
✨ 主要特性
📚 详细文档
模型描述
CAMeLBERT - DA诗歌分类模型 是通过微调 CAMeLBERT方言阿拉伯语(DA) 模型构建的诗歌分类模型。在微调过程中,我们使用了 APCD 数据集。
我们的微调过程和所使用的超参数可以在我们的论文 "The Interplay of Variant, Size, and Task Type in Arabic Pre - trained Language Models" 中找到。我们的微调代码可以在 这里 找到。
引用
@inproceedings{inoue-etal-2021-interplay,
title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models",
author = "Inoue, Go and
Alhafni, Bashar and
Baimukan, Nurpeiis and
Bouamor, Houda and
Habash, Nizar",
booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop",
month = apr,
year = "2021",
address = "Kyiv, Ukraine (Online)",
publisher = "Association for Computational Linguistics",
abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.",
}
📄 许可证
本项目采用Apache - 2.0许可证。