🚀 SciScore
SciScore是一个基于特定模型微调的工具,它以隐式提示和生成图像为输入,输出代表两者科学一致性的分数,有助于评估图像与科学描述的匹配程度。
🚀 快速开始
from transformers import AutoProcessor, AutoModel
from PIL import Image
import torch
device = "cuda"
processor_name_or_path = "Jialuo21/SciScore"
model_pretrained_name_or_path = "Jialuo21/SciScore"
processor = AutoProcessor.from_pretrained(processor_name_or_path)
model = AutoModel.from_pretrained(model_pretrained_name_or_path).eval().to(device)
def calc_probs(prompt, images):
image_inputs = processor(
images=images,
padding=True,
truncation=True,
max_length=77,
return_tensors="pt",
).to(device)
text_inputs = processor(
text=prompt,
padding=True,
truncation=True,
max_length=77,
return_tensors="pt",
).to(device)
with torch.no_grad():
image_embs = model.get_image_features(**image_inputs)
image_embs = image_embs / torch.norm(image_embs, dim=-1, keepdim=True)
text_embs = model.get_text_features(**text_inputs)
text_embs = text_embs / torch.norm(text_embs, dim=-1, keepdim=True)
scores = model.logit_scale.exp() * (text_embs @ image_embs.T)[0]
probs = torch.softmax(scores, dim=-1)
return probs.cpu().tolist()
pil_images = [Image.open("./examples/camera_1.png"), Image.open("./examples/camera_2.png")]
prompt = "A camera screen without electricity sits beside the window, realistic."
print(calc_probs(prompt, pil_images))
✨ 主要特性

SciScore在基础模型CLIP-H上进行微调,使用了Science-T2I数据集。它能够根据输入的隐式提示和生成图像,输出代表两者科学一致性的分数。
📚 详细文档
资源链接
引用信息
@misc{li2025sciencet2iaddressingscientificillusions,
title={Science-T2I: Addressing Scientific Illusions in Image Synthesis},
author={Jialuo Li and Wenhao Chai and Xingyu Fu and Haiyang Xu and Saining Xie},
year={2025},
eprint={2504.13129},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2504.13129},
}
📄 许可证
本项目采用Apache-2.0许可证。