🚀 Pegasus模型训练与评估项目
本项目基于transformers v4.13开发了一个模型,在这个分支中有一些小的补丁。
🚀 快速开始
环境准备
本项目需要克隆特定的仓库并切换到指定的分支,以下是具体的操作步骤:
git clone https://github.com/vuiseng9/transformers
cd transformers
git checkout pegasus-v4p13 && git reset --hard 41eeb07
模型训练
以下是训练模型的脚本,你可以根据需求调整参数:
#!/usr/bin/env bash
export CUDA_VISIBLE_DEVICES=0,1,2,3
NEPOCH=10
RUNID=pegasus-billsum-${NEPOCH}eph-run1
OUTDIR=/data1/vchua/pegasus-hf4p13/pegasus/${RUNID}
mkdir -p $OUTDIR
nohup python run_summarization.py \
--model_name_or_path google/pegasus-large \
--dataset_name billsum \
--do_train \
--adafactor \
--learning_rate 2e-4 \
--label_smoothing_factor 0.1 \
--num_train_epochs $NEPOCH \
--per_device_train_batch_size 2 \
--do_eval \
--per_device_eval_batch_size 2 \
--num_beams 8 \
--max_source_length 1024 \
--max_target_length 256 \
--evaluation_strategy steps \
--eval_steps 1000 \
--save_strategy steps \
--save_steps 2000 \
--logging_steps 1 \
--overwrite_output_dir \
--run_name $RUNID \
--output_dir $OUTDIR > $OUTDIR/run.log 2>&1 &
模型评估
以下是评估模型的脚本,同样可以根据需要调整参数:
#!/usr/bin/env bash
export CUDA_VISIBLE_DEVICES=3
DT=$(date +%F_%H-%M)
RUNID=pegasus-billsum-${DT}
OUTDIR=/data1/vchua/pegasus-hf4p13/pegasus-test/${RUNID}
mkdir -p $OUTDIR
nohup python run_summarization.py \
--model_name_or_path vuiseng9/pegasus-billsum \
--dataset_name billsum \
--max_source_length 1024 \
--max_target_length 256 \
--do_predict \
--per_device_eval_batch_size 8 \
--predict_with_generate \
--num_beams 8 \
--overwrite_output_dir \
--run_name $RUNID \
--output_dir $OUTDIR > $OUTDIR/run.log 2>&1 &
评估结果
尽管模型进行了10个epoch的微调,但本模型采用的是训练过程中评估损失最低的检查点(@12000步,6.6个epoch,210分钟)。使用此检查点进行测试/预测,结果如下:
***** predict metrics *****
predict_gen_len = 179.7363
predict_loss = 1.2452
predict_rouge1 = 56.8657
predict_rouge2 = 38.6531
predict_rougeL = 44.8399
predict_rougeLsum = 51.6266
predict_runtime = 1:19:28.20
predict_samples = 3269
predict_samples_per_second = 0.686
predict_steps_per_second = 0.086