🚀 重新训练的3层RoBERTa-wwm-ext模型
本项目提供了一个重新训练的3层RoBERTa-wwm-ext模型,旨在进一步加速中文自然语言处理任务,为相关领域的研究和应用提供有力支持。
✨ 主要特性
中文全词掩码预训练BERT
为了进一步加速中文自然语言处理,我们提供了采用全词掩码的中文预训练BERT模型。
Pre-Training with Whole Word Masking for Chinese BERT
Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Ziqing Yang, Shijin Wang, Guoping Hu
项目开发基础
本仓库基于以下项目开发:https://github.com/google-research/bert
相关项目推荐
你可能还对以下项目感兴趣:
- 中文BERT系列: https://github.com/ymcui/Chinese-BERT-wwm
- 中文MacBERT: https://github.com/ymcui/MacBERT
- 中文ELECTRA: https://github.com/ymcui/Chinese-ELECTRA
- 中文XLNet: https://github.com/ymcui/Chinese-XLNet
- 知识蒸馏工具包 - TextBrewer: https://github.com/airaria/TextBrewer
更多资源
由HFL提供的更多资源:https://github.com/ymcui/HFL-Anthology
📄 许可证
本项目采用Apache-2.0许可证。
📚 详细文档
引用说明
如果您发现本技术报告或资源有用,请在您的论文中引用以下技术报告:
- 主要引用: https://arxiv.org/abs/2004.13922
@inproceedings{cui-etal-2020-revisiting,
title = "Revisiting Pre-Trained Models for {C}hinese Natural Language Processing",
author = "Cui, Yiming and
Che, Wanxiang and
Liu, Ting and
Qin, Bing and
Wang, Shijin and
Hu, Guoping",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.findings-emnlp.58",
pages = "657--668",
}
- 次要引用: https://arxiv.org/abs/1906.08101
@article{chinese-bert-wwm,
title={Pre-Training with Whole Word Masking for Chinese BERT},
author={Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Yang, Ziqing and Wang, Shijin and Hu, Guoping},
journal={arXiv preprint arXiv:1906.08101},
year={2019}
}