🚀 DistilBERT模型(基于IMDB负面评论训练)
本项目使用IMDB数据集里的负面评论对DistilBERT模型进行训练,可用于对负面情感文本进行精准分析与识别,为情感分析等相关任务提供有力支持。
🚀 快速开始
由于原文档未提供具体的快速开始内容,此部分暂无法详细展开。若有相关代码或步骤,可按照以下方式进行操作示例:
from transformers import DistilBertTokenizer, DistilBertForSequenceClassification
import torch
tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
model = DistilBertForSequenceClassification.from_pretrained('your-trained-model')
text = "This movie is really bad."
inputs = tokenizer(text, return_tensors='pt')
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
predicted_class_id = logits.argmax().item()
print(f"Predicted class: {predicted_class_id}")
✨ 主要特性
- 针对性训练:利用IMDB负面评论进行训练,对负面情感文本的识别更具针对性和准确性。
- 轻量级模型:DistilBERT本身是轻量级的预训练模型,在保证性能的同时,具有更快的推理速度和更低的计算资源需求。
📦 安装指南
若原文档有安装步骤,可在此处详细列出。例如:
pip install transformers
💻 使用示例
基础用法
from transformers import DistilBertTokenizer, DistilBertForSequenceClassification
import torch
tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
model = DistilBertForSequenceClassification.from_pretrained('your-trained-model')
text = "This book is terrible."
inputs = tokenizer(text, return_tensors='pt')
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
predicted_class_id = logits.argmax().item()
print(f"Predicted class: {predicted_class_id}")
高级用法
from transformers import DistilBertTokenizer, DistilBertForSequenceClassification
import torch
tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
model = DistilBertForSequenceClassification.from_pretrained('your-trained-model')
texts = ["This movie is a waste of time.", "The service in this restaurant is really poor."]
inputs = tokenizer(texts, return_tensors='pt', padding=True, truncation=True)
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
predicted_class_ids = logits.argmax(dim=1).tolist()
print(f"Predicted classes: {predicted_class_ids}")
📚 详细文档
若原文档有详细说明,可在此处展开介绍模型的训练过程、数据处理方式、评估指标等内容。
🔧 技术细节
若原文档有技术实现细节,可在此处详细阐述模型的架构微调、训练参数设置、优化器选择等技术要点。
📄 许可证
若原文档有许可证信息,可在此处列出具体的许可证类型和相关说明。