đ Pythia 70M Wikipedia Paragraphs Quantized Model
This project provides quantized versions of the Pythia 70M model trained on Wikipedia paragraphs, offering various quantization options for different use - cases.
đ Quick Start
If you are new to this project, you can start by exploring the provided quantized models and understanding how to use GGUF files. Refer to the "Usage" section for more details.
đ Documentation
đ Model Information
Property |
Details |
Base Model |
agentlans/pythia - 70m - wikipedia - paragraphs |
Datasets |
agentlans/wikipedia - paragraphs |
Language |
en |
Library Name |
transformers |
License |
apache - 2.0 |
Quantized By |
mradermacher |
Tags |
text - generation, wikipedia, pythia |
đ About
Weighted/imatrix quants of https://huggingface.co/agentlans/pythia - 70m - wikipedia - paragraphs. Static quants are available at https://huggingface.co/mradermacher/pythia - 70m - wikipedia - paragraphs - GGUF.
đģ Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM - 70B - German - V0.1 - GGUF) for more details, including on how to concatenate multi - part files.
đĻ Provided Quants
(sorted by size, not necessarily quality. IQ - quants are often preferable over similar sized non - IQ quants)
Link |
Type |
Size/GB |
Notes |
[GGUF](https://huggingface.co/mradermacher/pythia - 70m - wikipedia - paragraphs - i1 - GGUF/resolve/main/pythia - 70m - wikipedia - paragraphs.i1 - IQ1_S.gguf) |
i1 - IQ1_S |
0.1 |
for the desperate |
[GGUF](https://huggingface.co/mradermacher/pythia - 70m - wikipedia - paragraphs - i1 - GGUF/resolve/main/pythia - 70m - wikipedia - paragraphs.i1 - IQ1_M.gguf) |
i1 - IQ1_M |
0.1 |
mostly desperate |
[GGUF](https://huggingface.co/mradermacher/pythia - 70m - wikipedia - paragraphs - i1 - GGUF/resolve/main/pythia - 70m - wikipedia - paragraphs.i1 - IQ2_XXS.gguf) |
i1 - IQ2_XXS |
0.1 |
|
[GGUF](https://huggingface.co/mradermacher/pythia - 70m - wikipedia - paragraphs - i1 - GGUF/resolve/main/pythia - 70m - wikipedia - paragraphs.i1 - IQ2_XS.gguf) |
i1 - IQ2_XS |
0.1 |
|
[GGUF](https://huggingface.co/mradermacher/pythia - 70m - wikipedia - paragraphs - i1 - GGUF/resolve/main/pythia - 70m - wikipedia - paragraphs.i1 - IQ2_S.gguf) |
i1 - IQ2_S |
0.1 |
|
[GGUF](https://huggingface.co/mradermacher/pythia - 70m - wikipedia - paragraphs - i1 - GGUF/resolve/main/pythia - 70m - wikipedia - paragraphs.i1 - IQ2_M.gguf) |
i1 - IQ2_M |
0.1 |
|
[GGUF](https://huggingface.co/mradermacher/pythia - 70m - wikipedia - paragraphs - i1 - GGUF/resolve/main/pythia - 70m - wikipedia - paragraphs.i1 - Q2_K_S.gguf) |
i1 - Q2_K_S |
0.1 |
very low quality |
[GGUF](https://huggingface.co/mradermacher/pythia - 70m - wikipedia - paragraphs - i1 - GGUF/resolve/main/pythia - 70m - wikipedia - paragraphs.i1 - IQ3_XXS.gguf) |
i1 - IQ3_XXS |
0.1 |
lower quality |
[GGUF](https://huggingface.co/mradermacher/pythia - 70m - wikipedia - paragraphs - i1 - GGUF/resolve/main/pythia - 70m - wikipedia - paragraphs.i1 - Q2_K.gguf) |
i1 - Q2_K |
0.1 |
IQ3_XXS probably better |
[GGUF](https://huggingface.co/mradermacher/pythia - 70m - wikipedia - paragraphs - i1 - GGUF/resolve/main/pythia - 70m - wikipedia - paragraphs.i1 - IQ3_XS.gguf) |
i1 - IQ3_XS |
0.1 |
|
[GGUF](https://huggingface.co/mradermacher/pythia - 70m - wikipedia - paragraphs - i1 - GGUF/resolve/main/pythia - 70m - wikipedia - paragraphs.i1 - IQ3_S.gguf) |
i1 - IQ3_S |
0.1 |
beats Q3_K* |
[GGUF](https://huggingface.co/mradermacher/pythia - 70m - wikipedia - paragraphs - i1 - GGUF/resolve/main/pythia - 70m - wikipedia - paragraphs.i1 - Q3_K_S.gguf) |
i1 - Q3_K_S |
0.1 |
IQ3_XS probably better |
[GGUF](https://huggingface.co/mradermacher/pythia - 70m - wikipedia - paragraphs - i1 - GGUF/resolve/main/pythia - 70m - wikipedia - paragraphs.i1 - IQ3_M.gguf) |
i1 - IQ3_M |
0.1 |
|
[GGUF](https://huggingface.co/mradermacher/pythia - 70m - wikipedia - paragraphs - i1 - GGUF/resolve/main/pythia - 70m - wikipedia - paragraphs.i1 - Q3_K_M.gguf) |
i1 - Q3_K_M |
0.1 |
IQ3_S probably better |
[GGUF](https://huggingface.co/mradermacher/pythia - 70m - wikipedia - paragraphs - i1 - GGUF/resolve/main/pythia - 70m - wikipedia - paragraphs.i1 - Q3_K_L.gguf) |
i1 - Q3_K_L |
0.1 |
IQ3_M probably better |
[GGUF](https://huggingface.co/mradermacher/pythia - 70m - wikipedia - paragraphs - i1 - GGUF/resolve/main/pythia - 70m - wikipedia - paragraphs.i1 - IQ4_XS.gguf) |
i1 - IQ4_XS |
0.1 |
|
[GGUF](https://huggingface.co/mradermacher/pythia - 70m - wikipedia - paragraphs - i1 - GGUF/resolve/main/pythia - 70m - wikipedia - paragraphs.i1 - IQ4_NL.gguf) |
i1 - IQ4_NL |
0.1 |
prefer IQ4_XS |
[GGUF](https://huggingface.co/mradermacher/pythia - 70m - wikipedia - paragraphs - i1 - GGUF/resolve/main/pythia - 70m - wikipedia - paragraphs.i1 - Q4_0.gguf) |
i1 - Q4_0 |
0.1 |
fast, low quality |
[GGUF](https://huggingface.co/mradermacher/pythia - 70m - wikipedia - paragraphs - i1 - GGUF/resolve/main/pythia - 70m - wikipedia - paragraphs.i1 - Q4_K_S.gguf) |
i1 - Q4_K_S |
0.1 |
optimal size/speed/quality |
[GGUF](https://huggingface.co/mradermacher/pythia - 70m - wikipedia - paragraphs - i1 - GGUF/resolve/main/pythia - 70m - wikipedia - paragraphs.i1 - Q4_K_M.gguf) |
i1 - Q4_K_M |
0.1 |
fast, recommended |
[GGUF](https://huggingface.co/mradermacher/pythia - 70m - wikipedia - paragraphs - i1 - GGUF/resolve/main/pythia - 70m - wikipedia - paragraphs.i1 - Q4_1.gguf) |
i1 - Q4_1 |
0.2 |
|
[GGUF](https://huggingface.co/mradermacher/pythia - 70m - wikipedia - paragraphs - i1 - GGUF/resolve/main/pythia - 70m - wikipedia - paragraphs.i1 - Q5_K_S.gguf) |
i1 - Q5_K_S |
0.2 |
|
[GGUF](https://huggingface.co/mradermacher/pythia - 70m - wikipedia - paragraphs - i1 - GGUF/resolve/main/pythia - 70m - wikipedia - paragraphs.i1 - Q5_K_M.gguf) |
i1 - Q5_K_M |
0.2 |
|
[GGUF](https://huggingface.co/mradermacher/pythia - 70m - wikipedia - paragraphs - i1 - GGUF/resolve/main/pythia - 70m - wikipedia - paragraphs.i1 - Q6_K.gguf) |
i1 - Q6_K |
0.2 |
practically like static Q6_K |
Here is a handy graph by ikawrakow comparing some lower - quality quant types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
â FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized.
đ Thanks
I thank my company, nethype GmbH, for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to @nicoboss for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.