đ weather_classification_ViT
This model is a fine - tuned version of [google/vit - base - patch16 - 224 - in21k](https://huggingface.co/google/vit - base - patch16 - 224 - in21k) on the imagefolder dataset. It can effectively classify weather images, achieving high accuracy in evaluation.
đ Quick Start
This model is a fine - tuned version of [google/vit - base - patch16 - 224 - in21k](https://huggingface.co/google/vit - base - patch16 - 224 - in21k) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1268
- Accuracy: 0.9679
- Precision: 0.9679
- Recall: 0.9679
- F1: 0.9679
- Auc: 0.9974
đ Documentation
Model Information
Property |
Details |
Model Type |
Fine - tuned version of google/vit - base - patch16 - 224 - in21k |
Training Data |
imagefolder dataset |
Metrics |
Accuracy, Precision, Recall, F1, Auc |
License |
Apache - 2.0 |
Training Procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon = 1e - 08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
Training results
Training Loss |
Epoch |
Step |
Validation Loss |
Accuracy |
Precision |
Recall |
F1 |
Auc |
0.2811 |
0.2288 |
100 |
0.3139 |
0.8958 |
0.9147 |
0.8958 |
0.8970 |
0.9903 |
0.1396 |
0.4577 |
200 |
0.2454 |
0.9278 |
0.9307 |
0.9278 |
0.9282 |
0.9919 |
0.3761 |
0.6865 |
300 |
0.2952 |
0.9072 |
0.9117 |
0.9072 |
0.9071 |
0.9889 |
0.2365 |
0.9153 |
400 |
0.1797 |
0.9444 |
0.9447 |
0.9444 |
0.9445 |
0.9940 |
0.2528 |
1.1442 |
500 |
0.2470 |
0.9278 |
0.9307 |
0.9278 |
0.9278 |
0.9924 |
0.2364 |
1.3730 |
600 |
0.2448 |
0.9261 |
0.9306 |
0.9261 |
0.9264 |
0.9934 |
0.34 |
1.6018 |
700 |
0.1986 |
0.9404 |
0.9409 |
0.9404 |
0.9405 |
0.9929 |
0.2001 |
1.8307 |
800 |
0.1525 |
0.9542 |
0.9548 |
0.9542 |
0.9539 |
0.9960 |
0.0958 |
2.0595 |
900 |
0.1783 |
0.9507 |
0.9515 |
0.9507 |
0.9505 |
0.9952 |
0.1862 |
2.2883 |
1000 |
0.1654 |
0.9553 |
0.9558 |
0.9553 |
0.9551 |
0.9952 |
0.1021 |
2.5172 |
1100 |
0.1654 |
0.9462 |
0.9472 |
0.9462 |
0.9459 |
0.9958 |
0.1178 |
2.7460 |
1200 |
0.1591 |
0.9525 |
0.9536 |
0.9525 |
0.9523 |
0.9960 |
0.0474 |
2.9748 |
1300 |
0.1299 |
0.9633 |
0.9635 |
0.9633 |
0.9633 |
0.9975 |
0.046 |
3.2037 |
1400 |
0.1384 |
0.9628 |
0.9628 |
0.9628 |
0.9627 |
0.9972 |
0.0294 |
3.4325 |
1500 |
0.1388 |
0.9645 |
0.9644 |
0.9645 |
0.9644 |
0.9969 |
0.1833 |
3.6613 |
1600 |
0.1346 |
0.9633 |
0.9634 |
0.9633 |
0.9633 |
0.9971 |
0.0548 |
3.8902 |
1700 |
0.1268 |
0.9679 |
0.9679 |
0.9679 |
0.9679 |
0.9974 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
đ License
This project is licensed under the Apache - 2.0 license.