🚀 open-r1對OlympicCoder-7B的Llamacpp imatrix量化版本
本項目是對open-r1的OlympicCoder-7B模型進行的Llamacpp imatrix量化處理。它能幫助用戶在不同硬件條件下更高效地運行模型,提供了多種量化類型供選擇,以平衡模型質量和文件大小。
🚀 快速開始
使用 llama.cpp 版本 b4867 進行量化。
原始模型:https://huggingface.co/open-r1/OlympicCoder-7B
所有量化均使用imatrix選項,並採用來自 此處 的數據集。
你可以在 LM Studio 中運行這些量化模型,也可以直接使用 llama.cpp 或任何基於llama.cpp的項目來運行。
✨ 主要特性
- 多種量化類型:提供了豐富的量化類型,如bf16、Q8_0、Q6_K_L等,滿足不同硬件和性能需求。
- 在線重打包:部分量化類型支持在線重打包,可自動優化ARM和AVX機器的性能。
- 靈活選擇:用戶可根據自身硬件條件和需求,選擇合適的量化文件。
📦 安裝指南
使用huggingface-cli下載
點擊查看下載說明
首先,確保你已安裝huggingface-cli:
pip install -U "huggingface_hub[cli]"
然後,你可以指定要下載的特定文件:
huggingface-cli download bartowski/open-r1_OlympicCoder-7B-GGUF --include "open-r1_OlympicCoder-7B-Q4_K_M.gguf" --local-dir ./
如果模型大小超過50GB,它會被拆分為多個文件。若要將它們全部下載到本地文件夾,可運行:
huggingface-cli download bartowski/open-r1_OlympicCoder-7B-GGUF --include "open-r1_OlympicCoder-7B-Q8_0/*" --local-dir ./
你可以指定一個新的本地目錄(如open-r1_OlympicCoder-7B-Q8_0),也可以將它們全部下載到當前目錄(./)。
💻 使用示例
提示格式
<|im_start|>system
{system_prompt}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
<think>
📚 詳細文檔
下載文件選擇
嵌入/輸出權重
部分量化(如Q3_K_XL、Q4_K_L等)採用標準量化方法,將嵌入和輸出權重量化為Q8_0,而非通常的默認值。
ARM/AVX信息
以前,你會下載Q4_0_4_4/4_8/8_8,這些權重會在內存中交錯排列,以便通過一次加載更多數據來提高ARM和AVX機器的性能。
然而,現在有了一種名為“在線重打包”的權重處理方式。詳情見 此PR。如果你使用Q4_0,且硬件能從權重重打包中受益,它將自動即時進行處理。
從llama.cpp構建版本 b4282 開始,你將無法運行Q4_0_X_X文件,而需要使用Q4_0。
此外,如果你想獲得略好的質量,可以使用IQ4_NL,這得益於 此PR,它也會為ARM重打包權重,不過目前僅支持4_4。加載時間可能會更長,但總體速度會提高。
點擊查看Q4_0_X_X信息(已棄用)
我保留這部分內容,以展示使用支持在線重打包的Q4_0在性能上的潛在理論提升。
點擊查看AVX2系統(EPYC7702)上的基準測試
模型 |
大小 |
參數 |
後端 |
線程數 |
測試 |
令牌/秒 |
與Q4_0相比的百分比 |
qwen2 3B Q4_0 |
1.70 GiB |
3.09 B |
CPU |
64 |
pp512 |
204.03 ± 1.03 |
100% |
qwen2 3B Q4_0 |
1.70 GiB |
3.09 B |
CPU |
64 |
pp1024 |
282.92 ± 0.19 |
100% |
qwen2 3B Q4_0 |
1.70 GiB |
3.09 B |
CPU |
64 |
pp2048 |
259.49 ± 0.44 |
100% |
qwen2 3B Q4_0 |
1.70 GiB |
3.09 B |
CPU |
64 |
tg128 |
39.12 ± 0.27 |
100% |
qwen2 3B Q4_0 |
1.70 GiB |
3.09 B |
CPU |
64 |
tg256 |
39.31 ± 0.69 |
100% |
qwen2 3B Q4_0 |
1.70 GiB |
3.09 B |
CPU |
64 |
tg512 |
40.52 ± 0.03 |
100% |
qwen2 3B Q4_K_M |
1.79 GiB |
3.09 B |
CPU |
64 |
pp512 |
301.02 ± 1.74 |
147% |
qwen2 3B Q4_K_M |
1.79 GiB |
3.09 B |
CPU |
64 |
pp1024 |
287.23 ± 0.20 |
101% |
qwen2 3B Q4_K_M |
1.79 GiB |
3.09 B |
CPU |
64 |
pp2048 |
262.77 ± 1.81 |
101% |
qwen2 3B Q4_K_M |
1.79 GiB |
3.09 B |
CPU |
64 |
tg128 |
18.80 ± 0.99 |
48% |
qwen2 3B Q4_K_M |
1.79 GiB |
3.09 B |
CPU |
64 |
tg256 |
24.46 ± 3.04 |
83% |
qwen2 3B Q4_K_M |
1.79 GiB |
3.09 B |
CPU |
64 |
tg512 |
36.32 ± 3.59 |
90% |
qwen2 3B Q4_0_8_8 |
1.69 GiB |
3.09 B |
CPU |
64 |
pp512 |
271.71 ± 3.53 |
133% |
qwen2 3B Q4_0_8_8 |
1.69 GiB |
3.09 B |
CPU |
64 |
pp1024 |
279.86 ± 45.63 |
100% |
qwen2 3B Q4_0_8_8 |
1.69 GiB |
3.09 B |
CPU |
64 |
pp2048 |
320.77 ± 5.00 |
124% |
qwen2 3B Q4_0_8_8 |
1.69 GiB |
3.09 B |
CPU |
64 |
tg128 |
43.51 ± 0.05 |
111% |
qwen2 3B Q4_0_8_8 |
1.69 GiB |
3.09 B |
CPU |
64 |
tg256 |
43.35 ± 0.09 |
110% |
qwen2 3B Q4_0_8_8 |
1.69 GiB |
3.09 B |
CPU |
64 |
tg512 |
42.60 ± 0.31 |
105% |
Q4_0_8_8在提示處理方面有顯著提升,在文本生成方面有小幅提升。
選擇哪個文件
點擊查看詳情
Artefact2提供了一篇很棒的文章,帶有展示各種性能的圖表,可查看 此處
首先要確定你能運行多大的模型。為此,你需要了解自己有多少內存(RAM)和/或顯存(VRAM)。
如果你希望模型運行得儘可能快,你需要將整個模型放入GPU的顯存中。選擇文件大小比GPU總顯存小1 - 2GB的量化文件。
如果你追求絕對的最高質量,將系統內存和GPU顯存相加,然後選擇文件大小比該總和小1 - 2GB的量化文件。
接下來,你需要決定是使用“I量化”還是“K量化”。
如果你不想考慮太多,選擇K量化文件。這些文件格式為'QX_K_X',如Q5_K_M。
如果你想深入瞭解,可以查看這個非常有用的特性圖表:
llama.cpp特性矩陣
但基本上,如果你目標是低於Q4的量化,並且你使用的是cuBLAS(Nvidia)或rocBLAS(AMD),你應該考慮I量化文件。這些文件格式為IQX_X,如IQ3_M。這些是較新的格式,在相同大小下提供更好的性能。
這些I量化文件也可以在CPU上使用,但比對應的K量化文件慢,所以你需要在速度和性能之間做出權衡。
I量化文件與Vulcan(也是AMD的)不兼容,所以如果你有AMD顯卡,請仔細檢查你使用的是rocBLAS版本還是Vulcan版本。在撰寫本文時,LM Studio有一個支持ROCm的預覽版,其他推理引擎也有針對ROCm的特定版本。
🔧 技術細節
嵌入/輸出權重量化
部分量化類型(如Q3_K_XL、Q4_K_L等)採用特殊的量化方式,將嵌入和輸出權重量化為Q8_0,而非默認值,以在一定程度上提升模型性能和質量。
在線重打包
Q4_0支持在線重打包,可根據硬件情況自動優化權重排列,提高ARM和AVX機器的性能。這一特性在llama.cpp的特定版本(如b4282)之後有了更明確的使用要求。
📄 許可證
本項目使用的許可證為apache-2.0。
致謝
感謝kalomaze和Dampf在創建imatrix校準數據集方面提供的幫助。
感謝ZeroWw在嵌入/輸出實驗方面提供的靈感。
感謝LM Studio對我工作的贊助。
如果你想支持我的工作,請訪問我的ko-fi頁面:https://ko-fi.com/bartowski