Gte Large Zh GGUF
該模型是通過llama.cpp從thenlper/gte-large-zh轉換而來的GGUF格式模型,主要用於中文文本嵌入和句子相似度計算。
Downloads 37
Release Time : 2/14/2025
Model Overview
基於thenlper/gte-large-zh轉換的GGUF格式模型,支持中文文本嵌入和多種自然語言處理任務。
Model Features
多任務評估基準
在多種中文自然語言處理任務上進行了全面評估
句子嵌入
能夠生成高質量的句子嵌入表示
GGUF格式支持
通過llama.cpp框架支持高效推理
Model Capabilities
語義文本相似度計算
文本分類
信息檢索
重排序
文本聚類
句子對分類
Use Cases
語義相似度
問答系統
計算問題和候選答案之間的語義相似度
在MTEB AFQMC數據集上達到48.94的餘弦相似度皮爾遜係數
文本匹配
判斷兩個句子是否表達相同含義
在MTEB LCQMC數據集上達到69.51的餘弦相似度皮爾遜係數
信息檢索
醫療問答檢索
從醫療知識庫中檢索相關答案
在MTEB CmedqaRetrieval數據集上前10命中率(MAP@10)達到36.50%
電商商品檢索
根據用戶查詢檢索相關商品
在MTEB EcomRetrieval數據集上前10命中率(MAP@10)達到62.17%
文本分類
情感分析
判斷文本的情感傾向
在MTEB多語言情感分析數據集上準確率達到76.48%
意圖識別
識別用戶輸入的意圖類別
在MTEB Massive意圖分類(中文)數據集上準確率達到73.31%
🚀 linlueird/gte-large-zh-GGUF
本模型是通過 llama.cpp,藉助 ggml.ai 的 GGUF-my-repo 空間,從 thenlper/gte-large-zh
轉換為 GGUF 格式的。有關該模型的更多詳細信息,請參考原始模型卡片。
🚀 快速開始
本模型可通過 llama.cpp 使用,以下是具體步驟。
📦 安裝指南
可通過 brew(適用於 Mac 和 Linux)安裝 llama.cpp:
brew install llama.cpp
💻 使用示例
基礎用法
CLI 方式
llama-cli --hf-repo linlueird/gte-large-zh-GGUF --hf-file gte-large-zh-q4_k_m.gguf -p "The meaning to life and the universe is"
Server 方式
llama-server --hf-repo linlueird/gte-large-zh-GGUF --hf-file gte-large-zh-q4_k_m.gguf -c 2048
高級用法
你也可以直接按照 Llama.cpp 倉庫中列出的使用步驟使用此檢查點。
步驟 1:從 GitHub 克隆 llama.cpp
git clone https://github.com/ggerganov/llama.cpp
步驟 2:進入 llama.cpp 文件夾,並使用 LLAMA_CURL=1
標誌以及其他特定硬件標誌(例如,在 Linux 上使用英偉達 GPU 時使用 LLAMA_CUDA=1
)進行編譯
cd llama.cpp && LLAMA_CURL=1 make
步驟 3:通過主二進制文件運行推理
./llama-cli --hf-repo linlueird/gte-large-zh-GGUF --hf-file gte-large-zh-q4_k_m.gguf -p "The meaning to life and the universe is"
或者
./llama-server --hf-repo linlueird/gte-large-zh-GGUF --hf-file gte-large-zh-q4_k_m.gguf -c 2048
📄 許可證
本項目採用 MIT 許可證。
🔍 模型指標
屬性 | 詳情 |
---|---|
模型類型 | gte-large-zh |
基礎模型 | thenlper/gte-large-zh |
許可證 | MIT |
標籤 | mteb、sentence-similarity、sentence-transformers、Sentence Transformers、llama-cpp、gguf-my-repo |
各任務指標詳情
STS 任務
數據集 | 指標類型 | 值 |
---|---|---|
MTEB AFQMC | cos_sim_pearson | 48.94131905219026 |
MTEB AFQMC | cos_sim_spearman | 54.58261199731436 |
MTEB AFQMC | euclidean_pearson | 52.73929210805982 |
MTEB AFQMC | euclidean_spearman | 54.582632097533676 |
MTEB AFQMC | manhattan_pearson | 52.73123295724949 |
MTEB AFQMC | manhattan_spearman | 54.572941830465794 |
MTEB ATEC | cos_sim_pearson | 47.292931669579005 |
MTEB ATEC | cos_sim_spearman | 54.601019783506466 |
MTEB ATEC | euclidean_pearson | 54.61393532658173 |
MTEB ATEC | euclidean_spearman | 54.60101865708542 |
MTEB ATEC | manhattan_pearson | 54.59369555606305 |
MTEB ATEC | manhattan_spearman | 54.601098593646036 |
MTEB LCQMC | cos_sim_pearson | 69.50947272908907 |
MTEB LCQMC | cos_sim_spearman | 74.40054474949213 |
MTEB LCQMC | euclidean_pearson | 73.53007373987617 |
MTEB LCQMC | euclidean_spearman | 74.40054474732082 |
MTEB LCQMC | manhattan_pearson | 73.51396571849736 |
MTEB LCQMC | manhattan_spearman | 74.38395696630835 |
MTEB PAWSX | cos_sim_pearson | 35.301730226895955 |
MTEB PAWSX | cos_sim_spearman | 38.54612530948101 |
MTEB PAWSX | euclidean_pearson | 39.02831131230217 |
MTEB PAWSX | euclidean_spearman | 38.54612530948101 |
MTEB PAWSX | manhattan_pearson | 39.04765584936325 |
MTEB PAWSX | manhattan_spearman | 38.54455759013173 |
MTEB QBQTC | cos_sim_pearson | 32.27907454729754 |
MTEB QBQTC | cos_sim_spearman | 33.35945567162729 |
MTEB QBQTC | euclidean_pearson | 31.997628193815725 |
MTEB QBQTC | euclidean_spearman | 33.3592386340529 |
MTEB QBQTC | manhattan_pearson | 31.97117833750544 |
MTEB QBQTC | manhattan_spearman | 33.30857326127779 |
MTEB STS22 (zh) | cos_sim_pearson | 62.53712784446981 |
MTEB STS22 (zh) | cos_sim_spearman | 62.975074386224286 |
MTEB STS22 (zh) | euclidean_pearson | 61.791207731290854 |
MTEB STS22 (zh) | euclidean_spearman | 62.975073716988064 |
MTEB STS22 (zh) | manhattan_pearson | 62.63850653150875 |
MTEB STS22 (zh) | manhattan_spearman | 63.56640346497343 |
MTEB STSB | cos_sim_pearson | 79.52067424748047 |
MTEB STSB | cos_sim_spearman | 79.68425102631514 |
MTEB STSB | euclidean_pearson | 79.27553959329275 |
MTEB STSB | euclidean_spearman | 79.68450427089856 |
MTEB STSB | manhattan_pearson | 79.21584650471131 |
MTEB STSB | manhattan_spearman | 79.6419242840243 |
分類任務
數據集 | 指標類型 | 值 |
---|---|---|
MTEB AmazonReviewsClassification (zh) | accuracy | 47.233999999999995 |
MTEB AmazonReviewsClassification (zh) | f1 | 45.68998446563349 |
MTEB IFlyTek | accuracy | 49.60369372835706 |
MTEB IFlyTek | f1 | 38.24016248875209 |
MTEB JDReview | accuracy | 86.71669793621012 |
MTEB JDReview | ap | 55.75807094995178 |
MTEB JDReview | f1 | 81.59033162805417 |
MTEB MassiveIntentClassification (zh-CN) | accuracy | 73.30531271015468 |
MTEB MassiveIntentClassification (zh-CN) | f1 | 70.88091430578575 |
MTEB MassiveScenarioClassification (zh-CN) | accuracy | 75.7128446536651 |
MTEB MassiveScenarioClassification (zh-CN) | f1 | 75.06125593532262 |
MTEB MultilingualSentiment | accuracy | 76.47666666666667 |
MTEB MultilingualSentiment | f1 | 76.4808576632057 |
MTEB OnlineShopping | accuracy | 92.68 |
MTEB OnlineShopping | ap | 90.78652757815115 |
MTEB OnlineShopping | f1 | 92.67153098230253 |
MTEB TNews | accuracy | 51.979000000000006 |
MTEB TNews | f1 | 50.35658238894168 |
MTEB Waimai | accuracy | 88.36999999999999 |
MTEB Waimai | ap | 73.29590829222836 |
MTEB Waimai | f1 | 86.74250506247606 |
聚類任務
數據集 | 指標類型 | 值 |
---|---|---|
MTEB CLSClusteringP2P | v_measure | 42.098169316685045 |
MTEB CLSClusteringS2S | v_measure | 38.90716707051822 |
MTEB ThuNewsClusteringP2P | v_measure | 68.36477832710159 |
MTEB ThuNewsClusteringS2S | v_measure | 62.92080622759053 |
重排序任務
數據集 | 指標類型 | 值 |
---|---|---|
MTEB CMedQAv1 | map | 86.09191911031553 |
MTEB CMedQAv1 | mrr | 88.6747619047619 |
MTEB CMedQAv2 | map | 86.45781885502122 |
MTEB CMedQAv2 | mrr | 89.01591269841269 |
MTEB MMarcoReranking | map | 31.188333827724108 |
MTEB MMarcoReranking | mrr | 29.84801587301587 |
MTEB T2Reranking | map | 65.8563449629786 |
MTEB T2Reranking | mrr | 75.82550832339254 |
檢索任務
數據集 | 指標類型 | 值 |
---|---|---|
MTEB CmedqaRetrieval | map_at_1 | 24.215 |
MTEB CmedqaRetrieval | map_at_10 | 36.498000000000005 |
MTEB CmedqaRetrieval | map_at_100 | 38.409 |
MTEB CmedqaRetrieval | map_at_1000 | 38.524 |
MTEB CmedqaRetrieval | map_at_3 | 32.428000000000004 |
MTEB CmedqaRetrieval | map_at_5 | 34.664 |
MTEB CmedqaRetrieval | mrr_at_1 | 36.834 |
MTEB CmedqaRetrieval | mrr_at_10 | 45.196 |
MTEB CmedqaRetrieval | mrr_at_100 | 46.214 |
MTEB CmedqaRetrieval | mrr_at_1000 | 46.259 |
MTEB CmedqaRetrieval | mrr_at_3 | 42.631 |
MTEB CmedqaRetrieval | mrr_at_5 | 44.044 |
MTEB CmedqaRetrieval | ndcg_at_1 | 36.834 |
MTEB CmedqaRetrieval | ndcg_at_10 | 43.146 |
MTEB CmedqaRetrieval | ndcg_at_100 | 50.632999999999996 |
MTEB CmedqaRetrieval | ndcg_at_1000 | 52.608999999999995 |
MTEB CmedqaRetrieval | ndcg_at_3 | 37.851 |
MTEB CmedqaRetrieval | ndcg_at_5 | 40.005 |
MTEB CmedqaRetrieval | precision_at_1 | 36.834 |
MTEB CmedqaRetrieval | precision_at_10 | 9.647 |
MTEB CmedqaRetrieval | precision_at_100 | 1.574 |
MTEB CmedqaRetrieval | precision_at_1000 | 0.183 |
MTEB CmedqaRetrieval | precision_at_3 | 21.48 |
MTEB CmedqaRetrieval | precision_at_5 | 15.649 |
MTEB CmedqaRetrieval | recall_at_1 | 24.215 |
MTEB CmedqaRetrieval | recall_at_10 | 54.079 |
MTEB CmedqaRetrieval | recall_at_100 | 84.943 |
MTEB CmedqaRetrieval | recall_at_1000 | 98.098 |
MTEB CmedqaRetrieval | recall_at_3 | 38.117000000000004 |
MTEB CmedqaRetrieval | recall_at_5 | 44.775999999999996 |
MTEB CovidRetrieval | map_at_1 | 78.583 |
MTEB CovidRetrieval | map_at_10 | 85.613 |
MTEB CovidRetrieval | map_at_100 | 85.777 |
MTEB CovidRetrieval | map_at_1000 | 85.77900000000001 |
MTEB CovidRetrieval | map_at_3 | 84.58 |
MTEB CovidRetrieval | map_at_5 | 85.22800000000001 |
MTEB CovidRetrieval | mrr_at_1 | 78.925 |
MTEB CovidRetrieval | mrr_at_10 | 85.667 |
MTEB CovidRetrieval | mrr_at_100 | 85.822 |
MTEB CovidRetrieval | mrr_at_1000 | 85.824 |
MTEB CovidRetrieval | mrr_at_3 | 84.651 |
MTEB CovidRetrieval | mrr_at_5 | 85.299 |
MTEB CovidRetrieval | ndcg_at_1 | 78.925 |
MTEB CovidRetrieval | ndcg_at_10 | 88.405 |
MTEB CovidRetrieval | ndcg_at_100 | 89.02799999999999 |
MTEB CovidRetrieval | ndcg_at_1000 | 89.093 |
MTEB CovidRetrieval | ndcg_at_3 | 86.393 |
MTEB CovidRetrieval | ndcg_at_5 | 87.5 |
MTEB CovidRetrieval | precision_at_1 | 78.925 |
MTEB CovidRetrieval | precision_at_10 | 9.789 |
MTEB CovidRetrieval | precision_at_100 | 1.005 |
MTEB CovidRetrieval | precision_at_1000 | 0.101 |
MTEB CovidRetrieval | precision_at_3 | 30.769000000000002 |
MTEB CovidRetrieval | precision_at_5 | 19.031000000000002 |
MTEB CovidRetrieval | recall_at_1 | 78.583 |
MTEB CovidRetrieval | recall_at_10 | 96.891 |
MTEB CovidRetrieval | recall_at_100 | 99.473 |
MTEB CovidRetrieval | recall_at_1000 | 100.0 |
MTEB CovidRetrieval | recall_at_3 | 91.438 |
MTEB CovidRetrieval | recall_at_5 | 94.152 |
MTEB DuRetrieval | map_at_1 | 25.604 |
MTEB DuRetrieval | map_at_10 | 77.171 |
MTEB DuRetrieval | map_at_100 | 80.033 |
MTEB DuRetrieval | map_at_1000 | 80.099 |
MTEB DuRetrieval | map_at_3 | 54.364000000000004 |
MTEB DuRetrieval | map_at_5 | 68.024 |
MTEB DuRetrieval | mrr_at_1 | 89.85 |
MTEB DuRetrieval | mrr_at_10 | 93.009 |
MTEB DuRetrieval | mrr_at_100 | 93.065 |
MTEB DuRetrieval | mrr_at_1000 | 93.068 |
MTEB DuRetrieval | mrr_at_3 | 92.72500000000001 |
MTEB DuRetrieval | mrr_at_5 | 92.915 |
MTEB DuRetrieval | ndcg_at_1 | 89.85 |
MTEB DuRetrieval | ndcg_at_10 | 85.038 |
MTEB DuRetrieval | ndcg_at_100 | 88.247 |
MTEB DuRetrieval | ndcg_at_1000 | 88.837 |
MTEB DuRetrieval | ndcg_at_3 | 85.20299999999999 |
MTEB DuRetrieval | ndcg_at_5 | 83.47 |
MTEB DuRetrieval | precision_at_1 | 89.85 |
MTEB DuRetrieval | precision_at_10 | 40.275 |
MTEB DuRetrieval | precision_at_100 | 4.709 |
MTEB DuRetrieval | precision_at_1000 | 0.486 |
MTEB DuRetrieval | precision_at_3 | 76.36699999999999 |
MTEB DuRetrieval | precision_at_5 | 63.75999999999999 |
MTEB DuRetrieval | recall_at_1 | 25.604 |
MTEB DuRetrieval | recall_at_10 | 85.423 |
MTEB DuRetrieval | recall_at_100 | 95.695 |
MTEB DuRetrieval | recall_at_1000 | 98.669 |
MTEB DuRetrieval | recall_at_3 | 56.737 |
MTEB DuRetrieval | recall_at_5 | 72.646 |
MTEB EcomRetrieval | map_at_1 | 51.800000000000004 |
MTEB EcomRetrieval | map_at_10 | 62.17 |
MTEB EcomRetrieval | map_at_100 | 62.649 |
MTEB EcomRetrieval | map_at_1000 | 62.663000000000004 |
MTEB EcomRetrieval | map_at_3 | 59.699999999999996 |
MTEB EcomRetrieval | map_at_5 | 61.23499999999999 |
MTEB EcomRetrieval | mrr_at_1 | 51.800000000000004 |
MTEB EcomRetrieval | mrr_at_10 | 62.17 |
MTEB EcomRetrieval | mrr_at_100 | 62.649 |
MTEB EcomRetrieval | mrr_at_1000 | 62.663000000000004 |
MTEB EcomRetrieval | mrr_at_3 | 59.699999999999996 |
MTEB EcomRetrieval | mrr_at_5 | 61.23499999999999 |
MTEB EcomRetrieval | ndcg_at_1 | 51.800000000000004 |
MTEB EcomRetrieval | ndcg_at_10 | 67.246 |
MTEB EcomRetrieval | ndcg_at_100 | 69.58 |
MTEB EcomRetrieval | ndcg_at_1000 | 69.925 |
MTEB EcomRetrieval | ndcg_at_3 | 62.197 |
MTEB EcomRetrieval | ndcg_at_5 | 64.981 |
MTEB EcomRetrieval | precision_at_1 | 51.800000000000004 |
MTEB EcomRetrieval | precision_at_10 | 8.32 |
MTEB EcomRetrieval | precision_at_100 | 0.941 |
MTEB EcomRetrieval | precision_at_1000 | 0.097 |
MTEB EcomRetrieval | precision_at_3 | 23.133 |
MTEB EcomRetrieval | precision_at_5 | 15.24 |
MTEB EcomRetrieval | recall_at_1 | 51.800000000000004 |
MTEB EcomRetrieval | recall_at_10 | 83.2 |
MTEB EcomRetrieval | recall_at_100 | 94.1 |
MTEB EcomRetrieval | recall_at_1000 | 96.8 |
MTEB EcomRetrieval | recall_at_3 | 69.39999999999999 |
MTEB EcomRetrieval | recall_at_5 | 76.2 |
MTEB MMarcoRetrieval | map_at_1 | 64.685 |
MTEB MMarcoRetrieval | map_at_10 | 73.803 |
MTEB MMarcoRetrieval | map_at_100 | 74.153 |
MTEB MMarcoRetrieval | map_at_1000 | 74.167 |
MTEB MMarcoRetrieval | map_at_3 | 71.98 |
MTEB MMarcoRetrieval | map_at_5 | 73.21600000000001 |
MTEB MMarcoRetrieval | mrr_at_1 | 66.891 |
MTEB MMarcoRetrieval | mrr_at_10 | 74.48700000000001 |
MTEB MMarcoRetrieval | mrr_at_100 | 74.788 |
MTEB MMarcoRetrieval | mrr_at_1000 | 74.801 |
MTEB MMarcoRetrieval | mrr_at_3 | 72.918 |
MTEB MMarcoRetrieval | mrr_at_5 | 73.965 |
MTEB MMarcoRetrieval | ndcg_at_1 | 66.891 |
MTEB MMarcoRetrieval | ndcg_at_10 | 77.534 |
MTEB MMarcoRetrieval | ndcg_at_100 | 79.106 |
MTEB MMarcoRetrieval | ndcg_at_1000 | 79.494 |
MTEB MMarcoRetrieval | ndcg_at_3 | 74.13499999999999 |
MTEB MMarcoRetrieval | ndcg_at_5 | 76.20700000000001 |
MTEB MMarcoRetrieval | precision_at_1 | 66.891 |
MTEB MMarcoRetrieval | precision_at_10 | 9.375 |
MTEB MMarcoRetrieval | precision_at_100 | 1.0170000000000001 |
MTEB MMarcoRetrieval | precision_at_1000 | 0.105 |
MTEB MMarcoRetrieval | precision_at_3 | 27.932000000000002 |
MTEB MMarcoRetrieval | precision_at_5 | 17.86 |
MTEB MMarcoRetrieval | recall_at_1 | 64.685 |
MTEB MMarcoRetrieval | recall_at_10 | 88.298 |
MTEB MMarcoRetrieval | recall_at_100 | 95.426 |
MTEB MMarcoRetrieval | recall_at_1000 | 98.48700000000001 |
MTEB MMarcoRetrieval | recall_at_3 | 79.44200000000001 |
MTEB MMarcoRetrieval | recall_at_5 | 84.358 |
MTEB MedicalRetrieval | map_at_1 | 52.7 |
MTEB MedicalRetrieval | map_at_10 | 59.532 |
MTEB MedicalRetrieval | map_at_100 | 60.085 |
MTEB MedicalRetrieval | map_at_1000 | 60.126000000000005 |
MTEB MedicalRetrieval | map_at_3 | 57.767 |
MTEB MedicalRetrieval | map_at_5 | 58.952000000000005 |
MTEB MedicalRetrieval | mrr_at_1 | 52.900000000000006 |
MTEB MedicalRetrieval | mrr_at_10 | 59.648999999999994 |
MTEB MedicalRetrieval | mrr_at_100 | 60.20100000000001 |
MTEB MedicalRetrieval | mrr_at_1000 | 60.242 |
MTEB MedicalRetrieval | mrr_at_3 | 57.882999999999996 |
MTEB MedicalRetrieval | mrr_at_5 | 59.068 |
MTEB MedicalRetrieval | ndcg_at_1 | 52.7 |
MTEB MedicalRetrieval | ndcg_at_10 | 62.883 |
MTEB MedicalRetrieval | ndcg_at_100 | 65.714 |
MTEB MedicalRetrieval | ndcg_at_1000 | 66.932 |
MTEB MedicalRetrieval | ndcg_at_3 | 59.34700000000001 |
MTEB MedicalRetrieval | ndcg_at_5 | 61.486 |
MTEB MedicalRetrieval | precision_at_1 | 52.7 |
MTEB MedicalRetrieval | precision_at_10 | 7.340000000000001 |
MTEB MedicalRetrieval | precision_at_100 | 0.8699999999999999 |
MTEB MedicalRetrieval | precision_at_1000 | 0.097 |
MTEB MedicalRetrieval | precision_at_3 | 21.3 |
MTEB MedicalRetrieval | precision_at_5 | 13.819999999999999 |
MTEB MedicalRetrieval | recall_at_1 | 52.7 |
MTEB MedicalRetrieval | recall_at_10 | 73.4 |
MTEB MedicalRetrieval | recall_at_100 | 87.0 |
MTEB MedicalRetrieval | recall_at_1000 | 96.8 |
MTEB MedicalRetrieval | recall_at_3 | 63.9 |
MTEB MedicalRetrieval | recall_at_5 | 69.1 |
MTEB T2Retrieval | map_at_1 | 27.889999999999997 |
MTEB T2Retrieval | map_at_10 | 72.878 |
MTEB T2Retrieval | map_at_100 | 76.737 |
MTEB T2Retrieval | map_at_1000 | 76.836 |
MTEB T2Retrieval | map_at_3 | 52.738 |
MTEB T2Retrieval | map_at_5 | 63.726000000000006 |
MTEB T2Retrieval | mrr_at_1 | 89.35600000000001 |
MTEB T2Retrieval | mrr_at_10 | 92.622 |
MTEB T2Retrieval | mrr_at_100 | 92.692 |
MTEB T2Retrieval | mrr_at_1000 | 92.694 |
MTEB T2Retrieval | mrr_at_3 | 92.13799999999999 |
MTEB T2Retrieval | mrr_at_5 | 92.452 |
MTEB T2Retrieval | ndcg_at_1 | 89.35600000000001 |
MTEB T2Retrieval | ndcg_at_10 | 81.932 |
MTEB T2Retrieval | ndcg_at_100 | 86.351 |
MTEB T2Retrieval | ndcg_at_1000 | 87.221 |
MTEB T2Retrieval | ndcg_at_3 | 84.29100000000001 |
MTEB T2Retrieval | ndcg_at_5 | 82.279 |
MTEB T2Retrieval | precision_at_1 | 89.35600000000001 |
MTEB T2Retrieval | precision_at_10 | 39.511 |
MTEB T2Retrieval | precision_at_100 | 4.901 |
MTEB T2Retrieval | precision_at_1000 | 0.513 |
MTEB T2Retrieval | precision_at_3 | 72.62100000000001 |
MTEB T2Retrieval | precision_at_5 | 59.918000000000006 |
MTEB T2Retrieval | recall_at_1 | 27.889999999999997 |
MTEB T2Retrieval | recall_at_10 | 80.636 |
MTEB T2Retrieval | recall_at_100 | 94.333 |
MTEB T2Retrieval | recall_at_1000 | 98.39099999999999 |
MTEB T2Retrieval | recall_at_3 | 54.797 |
MTEB T2Retrieval | recall_at_5 | 67.824 |
MTEB VideoRetrieval | map_at_1 | 59.3 |
MTEB VideoRetrieval | map_at_10 | 69.299 |
MTEB VideoRetrieval | map_at_100 | 69.669 |
MTEB VideoRetrieval | map_at_1000 | 69.682 |
MTEB VideoRetrieval | map_at_3 | 67.583 |
MTEB VideoRetrieval | map_at_5 | 68.57799999999999 |
MTEB VideoRetrieval | mrr_at_1 | 59.3 |
MTEB VideoRetrieval | mrr_at_10 | 69.299 |
MTEB VideoRetrieval | mrr_at_100 | 69.669 |
MTEB VideoRetrieval | mrr_at_1000 | 69.682 |
MTEB VideoRetrieval | mrr_at_3 | 67.583 |
MTEB VideoRetrieval | mrr_at_5 | 68.57799999999999 |
MTEB VideoRetrieval | ndcg_at_1 | 59.3 |
MTEB VideoRetrieval | ndcg_at_10 | 73.699 |
MTEB VideoRetrieval | ndcg_at_100 | 75.626 |
MTEB VideoRetrieval | ndcg_at_1000 | 75.949 |
MTEB VideoRetrieval | ndcg_at_3 | 70.18900000000001 |
MTEB VideoRetrieval | ndcg_at_5 | 71.992 |
MTEB VideoRetrieval | precision_at_1 | 59.3 |
MTEB VideoRetrieval | precision_at_10 | 8.73 |
MTEB VideoRetrieval | precision_at_100 | 0.9650000000000001 |
MTEB VideoRetrieval | precision_at_1000 | 0.099 |
MTEB VideoRetrieval | precision_at_3 | 25.900000000000002 |
MTEB VideoRetrieval | precision_at_5 | 16.42 |
MTEB VideoRetrieval | recall_at_1 | 59.3 |
MTEB VideoRetrieval | recall_at_10 | 87.3 |
MTEB VideoRetrieval | recall_at_100 | 96.5 |
MTEB VideoRetrieval | recall_at_1000 | 99.0 |
MTEB VideoRetrieval | recall_at_3 | 77.7 |
MTEB VideoRetrieval | recall_at_5 | 82.1 |
成對分類任務
數據集 | 指標類型 | 值 |
---|---|---|
MTEB Cmnli | cos_sim_accuracy | 82.51352976548407 |
MTEB Cmnli | cos_sim_ap | 89.49905141462749 |
MTEB Cmnli | cos_sim_f1 | 83.89334489486234 |
MTEB Cmnli | cos_sim_precision | 78.19761567993534 |
MTEB Cmnli | cos_sim_recall | 90.48398410100538 |
MTEB Cmnli | dot_accuracy | 82.51352976548407 |
MTEB Cmnli | dot_ap | 89.49108293121158 |
MTEB Cmnli | dot_f1 | 83.89334489486234 |
MTEB Cmnli | dot_precision | 78.19761567993534 |
MTEB Cmnli | dot_recall | 90.48398410100538 |
MTEB Cmnli | euclidean_accuracy | 82.51352976548407 |
MTEB Cmnli | euclidean_ap | 89.49904709975154 |
MTEB Cmnli | euclidean_f1 | 83.89334489486234 |
MTEB Cmnli | euclidean_precision | 78.19761567993534 |
MTEB Cmnli | euclidean_recall | 90.48398410100538 |
MTEB Cmnli | manhattan_accuracy | 82.48947684906794 |
MTEB Cmnli | manhattan_ap | 89.49231995962901 |
MTEB Cmnli | manhattan_f1 | 83.84681215233205 |
MTEB Cmnli | manhattan_precision | 77.28258726089528 |
MTEB Cmnli | manhattan_recall | 91.62964694879588 |
MTEB Cmnli | max_accuracy | 82.51352976548407 |
MTEB Cmnli | max_ap | 89.49905141462749 |
MTEB Cmnli | max_f1 | 83.89334489486234 |
MTEB Ocnli | cos_sim_accuracy | 77.58527341635084 |
MTEB Ocnli | cos_sim_ap | 79.32131557636497 |
MTEB Ocnli | cos_sim_f1 | 80.51948051948052 |
MTEB Ocnli | cos_sim_precision | 71.7948717948718 |
MTEB Ocnli | cos_sim_recall | 91.65786694825766 |
MTEB Ocnli | dot_accuracy | 77.58527341635084 |
MTEB Ocnli | dot_ap | 79.32131557636497 |
MTEB Ocnli | dot_f1 | 80.51948051948052 |
MTEB Ocnli | dot_precision | 71.7948717948718 |
MTEB Ocnli | dot_recall | 91.65786694825766 |
MTEB Ocnli | euclidean_accuracy | 77.58527341635084 |
MTEB Ocnli | euclidean_ap | 79.32131557636497 |
MTEB Ocnli | euclidean_f1 | 80.51948051948052 |
MTEB Ocnli | euclidean_precision | 71.7948717948718 |
MTEB Ocnli | euclidean_recall | 91.65786694825766 |
MTEB Ocnli | manhattan_accuracy | 77.15213860314023 |
MTEB Ocnli | manhattan_ap | 79.26178519246496 |
MTEB Ocnli | manhattan_f1 | 80.22028453418999 |
MTEB Ocnli | manhattan_precision | 70.94155844155844 |
MTEB Ocnli | manhattan_recall | 92.29144667370645 |
MTEB Ocnli | max_accuracy | 77.58527341635084 |
MTEB Ocnli | max_ap | 79.32131557636497 |
MTEB Ocnli | max_f1 | 80.51948051948052 |
Jina Embeddings V3
Jina Embeddings V3 是一個多語言句子嵌入模型,支持超過100種語言,專注於句子相似度和特徵提取任務。
文本嵌入
Transformers Supports Multiple Languages

J
jinaai
3.7M
911
Ms Marco MiniLM L6 V2
Apache-2.0
基於MS Marco段落排序任務訓練的交叉編碼器模型,用於信息檢索中的查詢-段落相關性評分
文本嵌入 English
M
cross-encoder
2.5M
86
Opensearch Neural Sparse Encoding Doc V2 Distill
Apache-2.0
基於蒸餾技術的稀疏檢索模型,專為OpenSearch優化,支持免推理文檔編碼,在搜索相關性和效率上優於V1版本
文本嵌入
Transformers English

O
opensearch-project
1.8M
7
Sapbert From PubMedBERT Fulltext
Apache-2.0
基於PubMedBERT的生物醫學實體表徵模型,通過自對齊預訓練優化語義關係捕捉
文本嵌入 English
S
cambridgeltl
1.7M
49
Gte Large
MIT
GTE-Large 是一個強大的句子轉換器模型,專注於句子相似度和文本嵌入任務,在多個基準測試中表現出色。
文本嵌入 English
G
thenlper
1.5M
278
Gte Base En V1.5
Apache-2.0
GTE-base-en-v1.5 是一個英文句子轉換器模型,專注於句子相似度任務,在多個文本嵌入基準測試中表現優異。
文本嵌入
Transformers Supports Multiple Languages

G
Alibaba-NLP
1.5M
63
Gte Multilingual Base
Apache-2.0
GTE Multilingual Base 是一個多語言的句子嵌入模型,支持超過50種語言,適用於句子相似度計算等任務。
文本嵌入
Transformers Supports Multiple Languages

G
Alibaba-NLP
1.2M
246
Polybert
polyBERT是一個化學語言模型,旨在實現完全由機器驅動的超快聚合物信息學。它將PSMILES字符串映射為600維密集指紋,以數值形式表示聚合物化學結構。
文本嵌入
Transformers

P
kuelumbus
1.0M
5
Bert Base Turkish Cased Mean Nli Stsb Tr
Apache-2.0
基於土耳其語BERT的句子嵌入模型,專為語義相似度任務優化
文本嵌入
Transformers Other

B
emrecan
1.0M
40
GIST Small Embedding V0
MIT
基於BAAI/bge-small-en-v1.5模型微調的文本嵌入模型,通過MEDI數據集與MTEB分類任務數據集訓練,優化了檢索任務的查詢編碼能力。
文本嵌入
Safetensors English
G
avsolatorio
945.68k
29
Featured Recommended AI Models
Llama 3 Typhoon V1.5x 8b Instruct
專為泰語設計的80億參數指令模型,性能媲美GPT-3.5-turbo,優化了應用場景、檢索增強生成、受限生成和推理任務
大型語言模型
Transformers Supports Multiple Languages

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一個基於SODA數據集訓練的超小型對話模型,專為邊緣設備推理設計,體積僅為Cosmo-3B模型的2%左右。
對話系統
Transformers English

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基於RoBERTa架構的中文抽取式問答模型,適用於從給定文本中提取答案的任務。
問答系統 Chinese
R
uer
2,694
98