GPT 4o Mini
GPT 4o Mini
GPT-4o mini是OpenAI最新的經濟高效的小型模型,旨在使人工智能更容易獲得和負擔得起。它在文本智能和多模態推理方面表現出色,優於GPT-3.5 Turbo等先前的模型。憑藉128K令牌的上下文窗口以及對文本和視覺的支持,它提供了低成本的實時應用程序,如客戶支持聊天機器人。它的價格為每百萬輸入代幣15美分,每百萬輸出代幣60美分,比其前身便宜得多。通過內置措施和提高對安全威脅的抵抗力來優先考慮安全。
Intelligence(Relatively Weak)
Speed(Relatively Slow)
Input Supported Modalities
Yes
Is Reasoning Model
128,000
Context Window
16,384
Maximum Output Tokens
2023-10-01
Knowledge Cutoff
Pricing
¥1.08 /M tokens
Input
¥4.32 /M tokens
Output
¥1.89 /M tokens
Blended Price
Quick Simple Comparison
GPT-4.1
¥2
GPT-4.1 nano
¥0.1
GPT-4.1 mini
¥0.4
Basic Parameters
GPT-4.1 Technical Parameters
Parameter Count
Not Announced
Context Length
128.00k tokens
Training Data Cutoff
2023-10-01
Open Source Category
Proprietary
Multimodal Support
Text, Image
Throughput
92
Release Date
2024-07-18
Response Speed
72.6,019 tokens/s
Benchmark Scores
Below is the performance of claude-monet in various standard benchmark tests. These tests evaluate the model's capabilities in different tasks and domains.
Intelligence Index
3568
Large Language Model Intelligence Level
Coding Index
2315
Indicator of AI model performance on coding tasks
Math Index
-
Capability indicator in solving mathematical problems, mathematical reasoning, or performing math-related tasks
MMLU Pro
64.8
Massive Multitask Multimodal Understanding - Testing understanding of text, images, audio, and video
GPQA
42.6
Graduate Physics Questions Assessment - Testing advanced physics knowledge with diamond science-level questions
HLE
4
The model's comprehensive average score on the Hugging Face Open LLM Leaderboard
LiveCodeBench
23.4
Specific evaluation focused on assessing large language models' ability in real-world code writing and solving programming competition problems
SciCode
22.9
The model's capability in code generation for scientific computing or specific scientific domains
HumanEval
87.6
Score achieved by the AI model on the specific HumanEval benchmark test set
Math 500 Score
78.9
Score on the first 500 larger, more well-known mathematical benchmark tests
AIME Score
11.7
An indicator measuring an AI model's ability to solve high-difficulty mathematical competition problems (specifically AIME level)
Featured Recommended AI Models
Gemini 2.0 Flash Lite (Preview)
google

¥0.58
Input tokens/million
¥2.16
Output tokens/million
1M
Context Length
Gemini 1.0 Pro
google

¥3.6
Input tokens/million
¥10.8
Output tokens/million
33k
Context Length
GPT 4
openai

¥216
Input tokens/million
¥432
Output tokens/million
8192
Context Length
Claude 3 Opus
anthropic

¥108
Input tokens/million
¥540
Output tokens/million
200k
Context Length
Deepseek R1
deepseek

¥3.96
Input tokens/million
¥15.77
Output tokens/million
128k
Context Length
Gemma 3 4B Instruct
google

-
Input tokens/million
-
Output tokens/million
128k
Context Length
Gemini 1.5 Pro (May '24)
google

¥18
Input tokens/million
¥72
Output tokens/million
2M
Context Length
Llama 3.2 Instruct 11B (Vision)
meta

¥0.43
Input tokens/million
¥0.43
Output tokens/million
128k
Context Length