Gliner Medium V2.1
Apache-2.0
GLiNERは汎用的な固有表現認識(NER)モデルで、あらゆるタイプのエンティティを認識でき、従来のNERモデルや大規模言語モデルに代わる実用的な選択肢を提供します。
シーケンスラベリング 英語
G
urchade
42.95k
30
Gliner Base
GLiNERは汎用的な固有表現抽出(NER)モデルで、双方向Transformerエンコーダーを使用してあらゆるタイプのエンティティを認識でき、従来のNERモデルの実用的な代替手段を提供します。
シーケンスラベリング 英語
G
urchade
4,921
76
Distilbert Base Uncased Finetuned Ner
Apache-2.0
DistilBERTベースの軽量固有表現抽出モデル、conll2003データセットでファインチューニング済み
シーケンスラベリング
Transformers

D
MikhailGalperin
15
0
おすすめAIモデル
Llama 3 Typhoon V1.5x 8b Instruct
タイ語専用に設計された80億パラメータの命令モデルで、GPT-3.5-turboに匹敵する性能を持ち、アプリケーションシナリオ、検索拡張生成、制限付き生成、推論タスクを最適化
大規模言語モデル
Transformers 複数言語対応

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-TinyはSODAデータセットでトレーニングされた超小型対話モデルで、エッジデバイス推論向けに設計されており、体積はCosmo-3Bモデルの約2%です。
対話システム
Transformers 英語

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
RoBERTaアーキテクチャに基づく中国語抽出型QAモデルで、与えられたテキストから回答を抽出するタスクに適しています。
質問応答システム 中国語
R
uer
2,694
98