Bert Base NER Russian
MIT
bert-base-multilingual-casedをファインチューニングしたロシア語テキストの固有表現認識(NER)モデルで、BIOLUタグ付け形式を採用し、人名、場所、組織などのさまざまなエンティティタイプを認識できます。
シーケンスラベリング
Transformers その他

B
Gherman
128.72k
7
NER RUBERT Per Loc Org
BERTアーキテクチャに基づく軽量級のロシア語命名エンティティ認識モデルで、人物、場所、組織の3種類のエンティティの認識をサポートします。
シーケンスラベリング
Transformers

N
tesemnikov-av
15
0
おすすめAIモデル
Llama 3 Typhoon V1.5x 8b Instruct
タイ語専用に設計された80億パラメータの命令モデルで、GPT-3.5-turboに匹敵する性能を持ち、アプリケーションシナリオ、検索拡張生成、制限付き生成、推論タスクを最適化
大規模言語モデル
Transformers 複数言語対応

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-TinyはSODAデータセットでトレーニングされた超小型対話モデルで、エッジデバイス推論向けに設計されており、体積はCosmo-3Bモデルの約2%です。
対話システム
Transformers 英語

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
RoBERTaアーキテクチャに基づく中国語抽出型QAモデルで、与えられたテキストから回答を抽出するタスクに適しています。
質問応答システム 中国語
R
uer
2,694
98