🚀 Mamba
This repository houses the mamba-2.8b
model compatible with the transformers
library. The checkpoints remain unaltered, while the complete config.json
and tokenizer have been uploaded to this repository.
🚀 Quick Start
To use this model, you need to perform the following installations.
📦 Installation
First, you need to install the transformers
library from the main
branch until transformers=4.39.0
is officially released:
pip install git+https://github.com/huggingface/transformers@main
We also suggest installing both causal_conv_1d
and mamba-ssm
using the following commands:
pip install causal-conv1d>=1.2.0
pip install mamba-ssm
If either of these two libraries is not installed, the "eager" implementation will be used. Otherwise, the more optimized cuda
kernels will be employed.
💻 Usage Examples
Basic Usage
You can utilize the classic generate
API for text generation:
>>> from transformers import MambaConfig, MambaForCausalLM, AutoTokenizer
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("state-spaces/mamba-370m-hf")
>>> model = MambaForCausalLM.from_pretrained("state-spaces/mamba-370m-hf")
>>> input_ids = tokenizer("Hey how are you doing?", return_tensors="pt")["input_ids"]
>>> out = model.generate(input_ids, max_new_tokens=10)
>>> print(tokenizer.batch_decode(out))
["Hey how are you doing?\n\nI'm doing great.\n\nI"]
Advanced Usage
Here is an example of fine - tuning the model using the peft
library. Note that we recommend keeping the model in float32 during fine - tuning:
from datasets import load_dataset
from trl import SFTTrainer
from peft import LoraConfig
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments
tokenizer = AutoTokenizer.from_pretrained("state-spaces/mamba-370m-hf")
model = AutoModelForCausalLM.from_pretrained("state-spaces/mamba-370m-hf")
dataset = load_dataset("Abirate/english_quotes", split="train")
training_args = TrainingArguments(
output_dir="./results",
num_train_epochs=3,
per_device_train_batch_size=4,
logging_dir='./logs',
logging_steps=10,
learning_rate=2e-3
)
lora_config = LoraConfig(
r=8,
target_modules=["x_proj", "embeddings", "in_proj", "out_proj"],
task_type="CAUSAL_LM",
bias="none"
)
trainer = SFTTrainer(
model=model,
tokenizer=tokenizer,
args=training_args,
peft_config=lora_config,
train_dataset=dataset,
dataset_text_field="quote",
)
trainer.train()