🚀 GreenMind-Medium-14B-R1
We're excited to release GreenMind-Medium-14B-R1, a medium-sized Vietnamese language model. It's highly effective at answering questions that demand intermediate-level reasoning, covering a wide range of topics like general knowledge, mathematics, natural science, and social science. By using the Group Relative Policy Optimization strategy for fine-tuning, we've guided the model to generate logically coherent responses.
🚀 Quick Start
Here's a code snippet with apply_chat_template
to show you how to load the tokenizer and model and generate content.
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "GreenNode/GreenMind-Medium-14B-R1"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(
model_name,
revision='main',
trust_remote_code=False,
)
prompt = r"""Vừa gà vừa chó
Bó lại cho tròn
Ba mươi sáu con
Một trăm chân chẵn
Hỏi có bao nhiêu con gà, bao nhiêu con chó?"""
messages = [
{
"role": "system",
"content": "Bạn là một trợ lý ảo hữu ích trong việc trả lời câu hỏi. Hãy suy luận từng bước, và đưa ra đáp án trong thẻ <answer> </answer>."
},
{
"role": "user",
"content": f"{prompt} Hãy suy luận từng bước trong thẻ <think> </think>. Và trả về đáp án trong thẻ <answer> </answer>."
},
{
"role": "assistant",
"content": "Hãy để tôi giải quyết từng bước.\n<think>"
}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
continue_final_message=True)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=1024
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
✨ Features
Model Description
Property |
Details |
Model Type |
Causal Language Models |
Base Model |
Qwen/Qwen2.5-14B-Instruct |
Parameters |
14.7B |
Context Length |
Full 131,072 tokens and generation 8192 tokens |
Language |
Vietnamese |
📚 Documentation
Evaluation
Table 1. SeaExam Dataset. GreenMind-Medium-14B-R1 compared to the base model and some larger models.
Model |
SeaExam-ID |
SeaExam-TH |
SeaExam-VI |
Avg |
Meta-Llama-3.1-70B-Instruct |
65.8 |
70.6 |
72.6 |
69.7 |
gemma3-27b-it |
64.4 |
67.5 |
73.1 |
68.4 |
Qwen2.5-14B-Instruct |
67.6 |
68.8 |
73.1 |
69.8 |
GreenMind-Medium-14B-R1 |
74.36 |
69.75 |
74.44 |
72.79 |
Table 2. VLSP 2023 Challenge: The performance of our model outperforms most SOTA models.
Model |
ComprehensionQA-vi ↑ |
Exams-vi ↑ |
LAMBADA-vi ↓ |
WikiQA-vi ↑ |
MMLU-vi ↑ |
cpt-smartbot-13b |
0.6633 |
0.3473 |
21.9864 |
0.4455 |
0.414 |
ura-llama-13b |
0.6556 |
0.342 |
17.5614 |
0.438 |
0.3973 |
greennode-7b (prior work) |
0.6122 |
0.2892 |
189.7782 |
0.3335 |
0.387 |
greennode-14b (prior work) |
0.6711 |
0.3672 |
29.5967 |
0.468 |
0.5281 |
GreenMind-Medium-14B-R1 (Ours) |
0.8689 |
0.7796 |
10.7609 |
0.7915 |
0.7124 |
Table 3. VMLU Dataset. The performance compared to fine-tuned models.
Model |
Access |
STEM |
Social Science |
Humanities |
Others |
Avg |
VNPTAI.IO-Medium-R1 |
Private |
77.09 |
82.3 |
78.85 |
69.98 |
77.43 |
MISA-Llama3-v1.1 |
Private |
77.5 |
80.75 |
76.62 |
71.6 |
76.87 |
BnK-AI-Medium-v2 |
Private |
80.94 |
80.76 |
70.7 |
74.06 |
76.66 |
VNPTAI.IO-Large-v4 |
Private |
78.05 |
79.05 |
75.39 |
70.37 |
76.21 |
GreenNode-xMedium-v1 |
Private |
75.7 |
81.09 |
75.25 |
69.33 |
75.5 |
GreenMind-Medium-14B-R1 (Ours) |
Weight |
76.78 |
77.36 |
72.32 |
69.03 |
74.29 |
CakebyVPBank-Large |
Private |
77.75 |
78.11 |
70.38 |
67.82 |
73.99 |
DeepSeek-R1-Distill-Llama-70B |
Weight |
76.77 |
76.23 |
67.98 |
66.82 |
72.41 |
📄 License
This repository and the model weights are licensed under the MIT License.
📖 Citation
If you find our work helpful, feel free to cite us.
@misc{tung2025greenmindnextgenerationvietnameselarge,
title={GreenMind: A Next-Generation Vietnamese Large Language Model for Structured and Logical Reasoning},
author={Luu Quy Tung and Hoang Quoc Viet and Vo Trong Thu},
year={2025},
eprint={2504.16832},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2504.16832},
}
📞 Contact Us
- General & Collaboration: tung.vu@greennode.ai, thuvt@greennode.ai
- Technical: viethq5@greennode.ai
🔗 Follow Us
https://x.com/greennode23
💬 Support
https://discord.gg/B6MJFM3J3a