đ cute-doodles-lokr-hidream
This is a LyCORIS adapter derived from HiDream-ai/HiDream-I1-Full. It is mainly used for text - to - image and image - to - image tasks, offering a unique way to generate cute doodles.
đ Quick Start
This section provides a brief introduction to the project and how to get started with it.
⨠Features
- Derived from HiDream-ai/HiDream-I1-Full, leveraging its powerful capabilities.
- Can generate cute doodles, especially for the prompt "a cute doodle of an orange tabby cat, with a grey mouse in its mouth."
- Supports various inference settings for flexible usage.
đĻ Installation
No specific installation steps are provided in the original README.
đģ Usage Examples
Basic Usage
The main validation prompt used during training was:
a cute doodle of an orange tabby cat, with a grey mouse in its mouth.
Advanced Usage
import torch
from diffusers import DiffusionPipeline
from lycoris import create_lycoris_from_weights
def download_adapter(repo_id: str):
import os
from huggingface_hub import hf_hub_download
adapter_filename = "pytorch_lora_weights.safetensors"
cache_dir = os.environ.get('HF_PATH', os.path.expanduser('~/.cache/huggingface/hub/models'))
cleaned_adapter_path = repo_id.replace("/", "_").replace("\\", "_").replace(":", "_")
path_to_adapter = os.path.join(cache_dir, cleaned_adapter_path)
path_to_adapter_file = os.path.join(path_to_adapter, adapter_filename)
os.makedirs(path_to_adapter, exist_ok=True)
hf_hub_download(
repo_id=repo_id, filename=adapter_filename, local_dir=path_to_adapter
)
return path_to_adapter_file
model_id = 'HiDream-ai/HiDream-I1-Full'
adapter_repo_id = 'markury/cute-doodles-lokr-hidream'
adapter_filename = 'pytorch_lora_weights.safetensors'
adapter_file_path = download_adapter(repo_id=adapter_repo_id)
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16)
lora_scale = 1.0
wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_file_path, pipeline.transformer)
wrapper.merge_to()
prompt = "a cute doodle of an orange tabby cat, with a grey mouse in its mouth."
negative_prompt = 'blurry, cropped, ugly'
from optimum.quanto import quantize, freeze, qint8
quantize(pipeline.transformer, weights=qint8)
freeze(pipeline.transformer)
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
model_output = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=50,
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42),
width=1024,
height=1024,
guidance_scale=5.0,
).images[0]
model_output.save("output.png", format="PNG")
đ Documentation
Validation settings
Property |
Details |
CFG |
5.0 |
CFG Rescale |
0.0 |
Steps |
50 |
Sampler |
FlowMatchEulerDiscreteScheduler |
Seed |
42 |
Resolutions |
1024,1024 |
Note: The validation settings are not necessarily the same as the training settings.
You can find some example images in the following gallery:
The text encoder was not trained. You may reuse the base model text encoder for inference.
Training settings
Property |
Details |
Training epochs |
0 |
Training steps |
600 |
Learning rate |
0.0001 - Learning rate schedule: constant - Warmup steps: 100 |
Max grad value |
0.01 |
Effective batch size |
2 - Micro - batch size: 2 - Gradient accumulation steps: 1 - Number of GPUs: 1 |
Gradient checkpointing |
True |
Prediction type |
flow_matching (extra parameters=['shift=3']) |
Optimizer |
optimi - lion |
Trainable parameter precision |
Pure BF16 |
Base model precision |
int8 - quanto |
Caption dropout probability |
0.0% |
LyCORIS Config:
{
"algo": "lokr",
"multiplier": 1.0,
"linear_dim": 10000,
"linear_alpha": 1,
"factor": 16,
"apply_preset": {
"target_module": [
"Attention",
"FeedForward"
],
"module_algo_map": {
"Attention": {
"factor": 16
},
"FeedForward": {
"factor": 16
}
}
}
}
Datasets
doodles
Property |
Details |
Repeats |
7 |
Total number of images |
183 |
Total number of aspect buckets |
1 |
Resolution |
1.048576 megapixels |
Cropped |
True |
Crop style |
random |
Crop aspect |
square |
Used for regularisation data |
No |
đ License
License: other