🚀 Asteroid model mpariente/DPRNNTasNet(ks=16)_WHAM!_sepclean
This is an audio source separation model trained on the WHAM! dataset using the Asteroid framework, which can effectively separate different audio sources.
🚀 Quick Start
This model was trained by Manuel Pariente using the wham/DPRNN recipe in Asteroid. It was trained on the sep_clean task of the WHAM! dataset.
♻️ Imported from https://zenodo.org/record/3903795#.X8pMBRNKjUI
💻 Usage Examples
Basic Usage
📚 Documentation
Training config
Property |
Details |
data.mode |
min |
data.nondefault_nsrc |
None |
data.sample_rate |
8000 |
data.segment |
2.0 |
data.task |
sep_clean |
data.train_dir |
data/wav8k/min/tr |
data.valid_dir |
data/wav8k/min/cv |
filterbank.kernel_size |
16 |
filterbank.n_filters |
64 |
filterbank.stride |
8 |
main_args.exp_dir |
exp/train_dprnn_ks16/ |
main_args.help |
None |
masknet.bidirectional |
True |
masknet.bn_chan |
128 |
masknet.chunk_size |
100 |
masknet.dropout |
0 |
masknet.hid_size |
128 |
masknet.hop_size |
50 |
masknet.in_chan |
64 |
masknet.mask_act |
sigmoid |
masknet.n_repeats |
6 |
masknet.n_src |
2 |
masknet.out_chan |
64 |
optim.lr |
0.001 |
optim.optimizer |
adam |
optim.weight_decay |
1e-05 |
training.batch_size |
6 |
training.early_stop |
True |
training.epochs |
200 |
training.gradient_clipping |
5 |
training.half_lr |
True |
training.num_workers |
6 |
Results
Property |
Details |
si_sdr |
18.227683982688003 |
si_sdr_imp |
18.22883576588251 |
sdr |
18.617789605060587 |
sdr_imp |
18.466745426438173 |
sir |
29.22773720052717 |
sir_imp |
29.07669302190474 |
sar |
19.116352171914485 |
sar_imp |
-130.06009796503054 |
stoi |
0.9722025377865715 |
stoi_imp |
0.23415680987800583 |
Citing Asteroid
@inproceedings{Pariente2020Asteroid,
title={Asteroid: the {PyTorch}-based audio source separation toolkit for researchers},
author={Manuel Pariente and Samuele Cornell and Joris Cosentino and Sunit Sivasankaran and
Efthymios Tzinis and Jens Heitkaemper and Michel Olvera and Fabian-Robert Stöter and
Mathieu Hu and Juan M. Martín-Doñas and David Ditter and Ariel Frank and Antoine Deleforge
and Emmanuel Vincent},
year={2020},
booktitle={Proc. Interspeech},
}
Or on arXiv:
@misc{pariente2020asteroid,
title={Asteroid: the PyTorch-based audio source separation toolkit for researchers},
author={Manuel Pariente and Samuele Cornell and Joris Cosentino and Sunit Sivasankaran and Efthymios Tzinis and Jens Heitkaemper and Michel Olvera and Fabian-Robert Stöter and Mathieu Hu and Juan M. Martín-Doñas and David Ditter and Ariel Frank and Antoine Deleforge and Emmanuel Vincent},
year={2020},
eprint={2005.04132},
archivePrefix={arXiv},
primaryClass={eess.AS}
}
📄 License
This model is released under the cc-by-sa-4.0
license.