🚀 Contradiction-PSB
A model for identifying contradictory sentences in patents using PatentSBERTa. It maps sentences and paragraphs to a 768-dimensional dense vector space, useful for tasks like clustering and semantic search.
🚀 Quick Start
This model simplifies the identification of contradictory sentences in patents. It maps text to a 768-dimensional vector space, facilitating tasks such as clustering and semantic search.
✨ Features
- Sentence Embedding: Maps sentences and paragraphs into a 768-dimensional dense vector space.
- Multiple Usage Modes: Can be used with
sentence-transformers
or HuggingFace Transformers
.
📦 Installation
To use this model, you need to install sentence-transformers
:
pip install -U sentence-transformers
💻 Usage Examples
Basic Usage
If you have sentence-transformers
installed, you can use the model as follows:
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('nategro/contradiction-psb')
embeddings = model.encode(sentences)
print(embeddings)
Advanced Usage
Without sentence-transformers
, you can use the model in the following way. First, pass your input through the transformer model, and then apply the appropriate pooling operation to the contextualized word embeddings:
from transformers import AutoTokenizer, AutoModel
import torch
def cls_pooling(model_output, attention_mask):
return model_output[0][:,0]
sentences = ['This is an example sentence', 'Each sentence is converted']
tokenizer = AutoTokenizer.from_pretrained('nategro/contradiction-psb')
model = AutoModel.from_pretrained('nategro/contradiction-psb')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
📚 Documentation
Evaluation Results
For an automated evaluation of this model, see the Sentence Embeddings Benchmark: https://seb.sbert.net
Training
The model was trained with the following parameters:
DataLoader:
torch.utils.data.dataloader.DataLoader
of length 496 with parameters:
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
Loss:
sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss
Parameters of the fit()-Method:
{
"epochs": 1,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": 496,
"warmup_steps": 50,
"weight_decay": 0.01
}
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
Citing & Authors
The following pre-trained model was used: AI-Growth-Lab/PatentSBERTa