đ Wav2Vec2-Large-XLSR-53-Frisian
This is a fine - tuned facebook/wav2vec2-large-xlsr-53 model for Frisian, leveraging the Common Voice dataset. When using this model, ensure that the speech input is sampled at 16kHz.
đ Quick Start
This fine - tuned model is based on facebook/wav2vec2-large-xlsr-53 and trained on Frisian data from Common Voice. Remember to sample your speech input at 16kHz when using this model.
⨠Features
- Language: Specifically fine - tuned for Frisian.
- Data Source: Utilizes the Common Voice dataset for training.
- Task: Designed for automatic speech recognition.
đĻ Installation
No specific installation steps are provided in the original document, so this section is skipped.
đģ Usage Examples
Basic Usage
The model can be used directly (without a language model) as follows:
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "fy-NL", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("iarfmoose/wav2vec2-large-xlsr-frisian")
model = Wav2Vec2ForCTC.from_pretrained("iarfmoose/wav2vec2-large-xlsr-frisian")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
Advanced Usage
The model can be evaluated as follows on the Frisian test data of Common Voice.
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "fy-NL", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("iarfmoose/wav2vec2-large-xlsr-frisian")
model = Wav2Vec2ForCTC.from_pretrained("iarfmoose/wav2vec2-large-xlsr-frisian")
model.to("cuda")
chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\\"\\â\\%\\â\\â\\īŋŊ\\â\\â\\ÂŦ\\â
]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
Test Result: 21.72 %
đ Documentation
Training
The Common Voice train
, validation
datasets were used for training.
The script used for training can be found here
A notebook of the evaluation script can be found here
đ License
This model is licensed under the apache - 2.0
license.
đ Model Information
Property |
Details |
Model Type |
XLSR Wav2Vec2 Frisian by Adam Montgomerie |
Training Data |
Common Voice train , validation datasets |
Task |
Automatic Speech Recognition |
Test Dataset |
Common Voice fy - NL |
Test WER |
21.72% |