đ OdiaSBERT-STS
This is an OdiaSBERT model (l3cube-pune/odia-sentence-bert-nli
) fine - tuned on the STS dataset. It is released as a part of project MahaNLP: https://github.com/l3cube-pune/MarathiNLP. A multilingual version of this model supporting major Indic languages and cross - lingual sentence similarity is shared here.
More details on the dataset, models, and baseline results can be found in our paper.
đ Quick Start
⨠Features
This model is an OdiaSBERT model fine - tuned on the STS dataset. It can be used for sentence similarity tasks. There is also a multilingual version supporting major Indic languages and cross - lingual sentence similarity.
đĻ Installation
Using this model becomes easy when you have sentence - transformers installed:
pip install -U sentence-transformers
đģ Usage Examples
Basic Usage
Using Sentence - Transformers
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
Advanced Usage
Using HuggingFace Transformers
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ['This is an example sentence', 'Each sentence is converted']
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained('{MODEL_NAME}')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
đ Documentation
The model is based on the OdiaSBERT architecture and is fine - tuned on the STS dataset. It can be used to calculate sentence similarity. You can use it with the sentence - transformers
library or directly with the transformers
library from HuggingFace.
đ§ Technical Details
The model is an OdiaSBERT model fine - tuned on the STS dataset. When using the transformers
library, it involves passing the input through the transformer model and then applying the mean pooling operation on the contextualized word embeddings to get the sentence embeddings.
đ License
This model is released under the CC - BY - 4.0 license.
Additional Information
Widget Examples
The following are some examples of using the model for sentence similarity:
- Example 1
- Source sentence: "āϞā§āĻāĻāĻŋ āĻā§āĻĄāĻŧāĻžāϞ āĻĻāĻŋāϝāĻŧā§ āĻāĻāĻāĻŋ āĻāĻžāĻ āĻā§āĻā§ āĻĢā§āϞāϞ"
- Comparison sentences:
- "āĻāĻāĻāύ āϞā§āĻ āĻā§āĻĄāĻŧāĻžāϞ āĻĻāĻŋāϝāĻŧā§ āĻāĻāĻāĻŋ āĻāĻžāĻā§āϰ āύāĻŋāĻā§ āĻāĻĒ āĻāϰā§"
- "āĻāĻāĻāύ āϞā§āĻ āĻāĻŋāĻāĻžāϰ āĻŦāĻžāĻāĻā§"
- "āĻāĻāĻāύ āĻŽāĻšāĻŋāϞāĻž āĻā§āĻĄāĻŧāĻžāϝāĻŧ āĻāĻĄāĻŧā§"
- Example 2
- Source sentence: "āĻāĻāĻāĻŋ āĻā§āϞāĻžāĻĒā§ āϏāĻžāĻāĻā§āϞ āĻāĻāĻāĻŋ āĻŦāĻŋāϞā§āĻĄāĻŋāĻāϝāĻŧā§āϰ āϏāĻžāĻŽāύ⧠āϰāϝāĻŧā§āĻā§"
- Comparison sentences:
- "āĻāĻŋāĻā§ āϧā§āĻŦāĻāϏāĻžāĻŦāĻļā§āώā§āϰ āϏāĻžāĻŽāύ⧠āĻāĻāĻāĻŋ āϏāĻžāĻāĻā§āϞ"
- "āĻā§āϞāĻžāĻĒā§ āĻĻā§āĻāĻŋ āĻā§āĻ āĻŽā§āϝāĻŧā§ āύāĻžāĻāĻā§"
- "āĻā§āĻĄāĻŧāĻž āĻāĻžāĻā§āϰ āϞāĻžāĻāύā§āϰ āϏāĻžāĻŽāύ⧠āĻŽāĻžāĻ ā§ āĻāĻžāϰāĻŖ āĻāϰāĻā§"
- Example 3
- Source sentence: "āĻāϞā§āϰ āĻāϤāĻŋ āϏāϏā§āĻŽ āĻšāĻāϝāĻŧāĻžāϰ āĻāϤāĻŋ āĻāĻŽāĻžāĻĻā§āϰ āĻŽāĻšāĻžāĻŦāĻŋāĻļā§āĻŦā§āϰ āĻ
āύā§āϝāϤāĻŽ āĻŽā§āϞāĻŋāĻ"
- Comparison sentences:
- "āĻāϞā§āϰ āĻāϤāĻŋ āĻāϤ?"
- "āĻāϞā§āϰ āĻāϤāĻŋ āϏāϏā§āĻŽ"
- "āĻāϞ⧠āĻŽāĻšāĻžāĻŦāĻŋāĻļā§āĻŦā§āϰ āĻĻā§āϰā§āϤāϤāĻŽ āĻāĻŋāύāĻŋāϏ"
Other Related Models
- Monolingual Similarity Models:
- Monolingual Indic Sentence BERT Models:
Citations
@article{deode2023l3cube,
title={L3Cube-IndicSBERT: A simple approach for learning cross-lingual sentence representations using multilingual BERT},
author={Deode, Samruddhi and Gadre, Janhavi and Kajale, Aditi and Joshi, Ananya and Joshi, Raviraj},
journal={arXiv preprint arXiv:2304.11434},
year={2023}
}
@article{joshi2022l3cubemahasbert,
title={L3Cube-MahaSBERT and HindSBERT: Sentence BERT Models and Benchmarking BERT Sentence Representations for Hindi and Marathi},
author={Joshi, Ananya and Kajale, Aditi and Gadre, Janhavi and Deode, Samruddhi and Joshi, Raviraj},
journal={arXiv preprint arXiv:2211.11187},
year={2022}
}
Related Papers
Property |
Details |
Pipeline Tag |
sentence - similarity |
Tags |
sentence - transformers, feature - extraction, sentence - similarity, transformers |
Model Type |
OdiaSBERT fine - tuned on STS dataset |
License |
CC - BY - 4.0 |
Language |
or |