Llama 3 Instruct 70B
Llama 3 Instruct 70B
Llama 3.1 70B Instruct 是一種針對多語言對話應用場景優化的大語言模型。在常見的行業基準測試中,它在許多可用的開源和閉源聊天模型之上表現出色。
Intelligence(Relatively Weak)
Speed(Slow)
Input Supported Modalities
No
Is Reasoning Model
8,192
Context Window
128,000
Maximum Output Tokens
2023-12-01
Knowledge Cutoff
Pricing
¥1.44 /M tokens
Input
¥1.44 /M tokens
Output
¥6.05 /M tokens
Blended Price
Quick Simple Comparison
Llama 4 Scout
¥0.08
Llama 4 Maverick
¥0.17
Llama 3.2 Instruct 1B
Basic Parameters
GPT-4.1 Technical Parameters
Parameter Count
70,000.0M
Context Length
8,192 tokens
Training Data Cutoff
2023-12-01
Open Source Category
Open Weights (Permissive License)
Multimodal Support
Text Only
Throughput
1,204
Release Date
2024-04-18
Response Speed
46.539,547 tokens/s
Benchmark Scores
Below is the performance of claude-monet in various standard benchmark tests. These tests evaluate the model's capabilities in different tasks and domains.
Intelligence Index
2748
Large Language Model Intelligence Level
Coding Index
1932
Indicator of AI model performance on coding tasks
Math Index
-
Capability indicator in solving mathematical problems, mathematical reasoning, or performing math-related tasks
MMLU Pro
57.4
Massive Multitask Multimodal Understanding - Testing understanding of text, images, audio, and video
GPQA
37.9
Graduate Physics Questions Assessment - Testing advanced physics knowledge with diamond science-level questions
HLE
4.4
The model's comprehensive average score on the Hugging Face Open LLM Leaderboard
LiveCodeBench
19.8
Specific evaluation focused on assessing large language models' ability in real-world code writing and solving programming competition problems
SciCode
18.9
The model's capability in code generation for scientific computing or specific scientific domains
HumanEval
79
Score achieved by the AI model on the specific HumanEval benchmark test set
Math 500 Score
48.3
Score on the first 500 larger, more well-known mathematical benchmark tests
AIME Score
-
An indicator measuring an AI model's ability to solve high-difficulty mathematical competition problems (specifically AIME level)
Featured Recommended AI Models
Gemini 2.0 Flash Lite (Preview)
google

¥0.58
Input tokens/million
¥2.16
Output tokens/million
1M
Context Length
GPT 4
openai

¥216
Input tokens/million
¥432
Output tokens/million
8192
Context Length
Sonar
perplexity

-
Input tokens/million
-
Output tokens/million
127k
Context Length
Claude 3 Opus
anthropic

¥108
Input tokens/million
¥540
Output tokens/million
200k
Context Length
Deepseek R1
deepseek

¥3.96
Input tokens/million
¥15.77
Output tokens/million
128k
Context Length
Gemma 3 4B Instruct
google

-
Input tokens/million
-
Output tokens/million
128k
Context Length
Gemini 1.5 Pro (May '24)
google

¥18
Input tokens/million
¥72
Output tokens/million
2M
Context Length
Llama 3.2 Instruct 11B (Vision)
meta

¥0.43
Input tokens/million
¥0.43
Output tokens/million
128k
Context Length